Homework 27

Define $f: \mathbb{C} \to \mathbb{C}$ and $u, v: \mathbb{R}^2 \to \mathbb{R}$ by

Show that

- 1. u and v satisfies the Cauchy Riemann equations at (x, y) = (0, 0)
- 2. f is not differentiable at z = 0.

Proof. Your proof goes here.

Solution. Your solution goes here.

Homework 28

Let G be the unit disk in \mathbb{C} , i.e.

$$G = B_1(0) = \{z \in \mathbb{C} : |z| < 1\}.$$

Let $f \in H(G)$.

- 1. Show that if $\operatorname{Re} f$ is constant on G then f is constant of G.
- 2. Show that if e^f is constant on G then f is constant of G.

Homework 29

Let G be an open subset of \mathbb{C} and $f \in H(G)$. Define

$$\begin{array}{rcl} G^* &:= & \{z \in \mathbb{C} \colon \overline{z} \in G\} \\ f^*(z) &:= & \overline{f(\overline{z})} & \mbox{ for } z \in G^* \ . \end{array}$$

Note (i.e., you need not show) that G^* is open in \mathbb{C} .

- 1. Show that $f^* \in H(G^*)$.
- 2. Express $(f^*)'$ in terms of f'.

Homework 30

Problem Source: Quals 2004. Let G be an open connected subset of \mathbb{C} . Let $f \in H(G)$ be s.t. there is a constant $K \in \mathbb{R}$ with |f(z)| = K for each $z \in G$. Show that f is constant of G.

Let $\sum_{n=0}^{\infty} a_n z^n$ have radius of convergence R. What is the radius of convergence of the following two power series?

- 1. $\sum_{n=0}^{\infty} a_n (2z)^n$
- 2. $\sum_{n=0}^{\infty} (a_n)^2 z^n$

You may use, without proving, Lemma 0.1 provided you read the proof I provided below. But first, read the handout *lim sup and lim inf of sequences*, which is posted on our Math 703/704 homepage. In particular, note Claims 10 and 12 of this handout.

Fact.

Let $\{s_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} . Let $\widehat{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$.

<u>Claim 10</u>. There exists a subsequence $\{s_{n_k}\}_{k=1}^{\infty}$ of $\{s_n\}_{n=1}^{\infty}$ s.t. $\lim_{k\to\infty} s_{n_k} = \overline{\lim}_{n\to\infty} s_n \in \widehat{\mathbb{R}}$. Thus, if $\{s_n\}_{n=1}^{\infty}$ is bounded above, then it has a subsequence that converges to an element in \mathbb{R} . <u>Claim 12</u>.

$$\overline{\lim_{n \to \infty}} s_n = \sup \left\{ \lim_{k \to \infty} s_{n_k} : \{s_{n_k}\}_{k=1}^{\infty} \text{ is a subsequence of } \{s_n\}_{n=1}^{\infty} \text{ s.t. } \lim_{k \to \infty} s_{n_k} \in \widehat{\mathbb{R}} \right\} .$$

Lemma 0.1. Let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence of nonnegative real numbers. Then

$$\overline{\lim_{n \to \infty}} (a_n)^2 = \left(\overline{\lim_{n \to \infty}} a_n \right)^2$$

Proof. LTGBG. Since $\{a_n\}_{n=1}^{\infty}$, and thus also $\{(a_n)^2\}_{n=1}^{\infty}$, are bounded above, the $\overline{\lim}_{n\to\infty} a_n$ and $\overline{\lim}_{n\to\infty} (a_n)^2$ are (finite) real numbers. \leq . By Claim 10, there is a subsequence $\{(a_{n_k})^2\}^{\infty}$ of $\{(a_n)^2\}^{\infty}$ such that

10, there is a subsequence
$$\left\{ (a_{n_k})^{-} \right\}_{\substack{k=1 \ n \to \infty}}$$
 of $\left\{ (a_n)^{-} \right\}_{n=1}$ such th
$$\lim_{k \to \infty} (a_{n_k})^2 = \lim_{n \to \infty} (a_n)^2 .$$

Since the a_n 's are nonnegative, $\overline{\lim}_{n\to\infty} a_n \ge 0$. Thus

students approached the problem.

$$\lim_{k \to \infty} a_{n_k} = \sqrt{\lim_{n \to \infty} (a_n)^2} \,.$$

So by Claim 12, $\sqrt{\overline{\lim}_{n\to\infty} (a_n)^2} \leq \overline{\lim}_{n\to\infty} a_n$. \geq . By Claim 10, \exists a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ of $\{a_n\}_{n=1}^{\infty}$ such that $\lim_{k\to\infty} a_{n_k} = \overline{\lim}_{n\to\infty} a_n$. But then $\lim_{k\to\infty} (a_{n_k})^2 = (\overline{\lim}_{n\to\infty} a_n)^2$. So by Claim 12, $(\overline{\lim}_{n\to\infty} a_n)^2 \leq \overline{\lim}_{n\to\infty} (a_n)^2$.

Now go back to Homework 1 ([K, Chapter 1, Section 11, #4) and see if you can find an easier proof than the proof that 16 of the 17 students gave. I tex-ed up the harder proof since this is how most

Homework 32

Prove that $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converges for each $z \in \mathbb{C}$ with |z| = 1 except z = 1.

You may use, without proving, the below Summation by parts Lemma 0.2.

Lemma 0.2. Let $\{a_n\}_{n=1}^N$ and $\{b_n\}_{n=1}^N$ be finite sequences of complex numbers. Let $B_k = \sum_{l=1}^k b_l$. Then for N > M > 1

$$\sum_{n=M}^{N} a_n b_n = a_N B_N - a_M B_{M-1} - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n$$

Hint for proof. Substitute $b_n = B_n - B_{n-1}$ in the sum on the left.

Homework 33

Let
$$B_1(0)$$
 be the open unit disk in \mathbb{C} , i.e. $B_1(0) := \{z \in \mathbb{C} : |z| < 1\}$. Show that for $z \in B_1(0)$

$$\text{Log } (1-z) = \sum_{n=1}^{\infty} -\frac{z^n}{n}$$

by proving that both sides are holomorphic on $B_1(0)$, agree at z = 0, and have the same derivative on $B_1(0)$.

Hint. Proposition I.4.10 from class notes and also [A, Theorem 3.1.2].

Homework 34

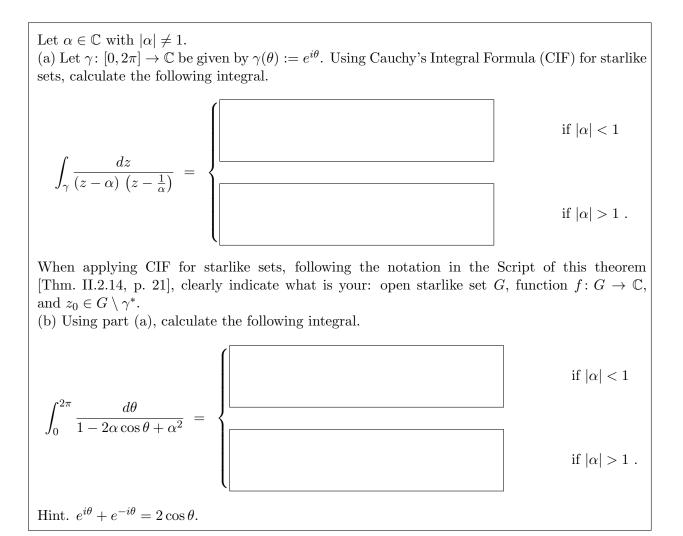
Let γ be the join of the three line segments [1 - i, 1 + i] and [1 + i, -1 + i] and [-1 + i, -1 - i]. Evaluate $\int_{\gamma} \frac{dz}{z}$ by using an appropriate branch of log z.

Hint. See [A, Theorem 3.1.2].

Homework 35

Compute

$$\int_{0}^{2\pi} e^{\cos t} \left[\cos \left(t + \sin t \right) \right] dt \quad \text{and} \quad \int_{0}^{2\pi} e^{\cos t} \left[\sin \left(t + \sin t \right) \right] dt$$
by computing $\int_{\gamma} e^{z} dz$ where $\gamma \colon [0, 2\pi] \to \mathbb{C}$ is given by $\gamma(t) := e^{it}$.



Homework 37

Evaluate (without parametrizing the curve γ , but rather by using Cauchy's Integral Theorem)

$$\int_{\gamma} \frac{dz}{1+z^2}$$

for the following $\gamma : [0, 2\pi] \to \mathbb{C}$. 1. $\gamma(t) := 1 + e^{it}$ 2. $\gamma(t) := -i + e^{it}$ 3. $\gamma(t) := 2e^{it}$

4. $\gamma(t) := 3i + 3e^{it}$

Problem Source: Quals 1998. Fix $a \in \mathbb{C}$ and r > 0 and let

$$B_r(a) := \{ z \in \mathbb{C} : |z-a| < r \}$$

$$\overline{B_r(a)} := \{ z \in \mathbb{C} : |z-a| \le r \}$$

$$\partial B_r(a) := \{ z \in \mathbb{C} : |z-a| = r \} .$$

Let G be an open set of \mathbb{C} that contains $\overline{B_r(a)}$. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of holomorphic functions on G such that $\{f_n\}_{n=1}^{\infty}$ converges to the zero function uniformly on $\partial B_r(a)$. Show that $\lim_{n\to\infty} f_n(z) = 0$ for each $z \in B_r(a)$.

Hint. Use Cauchy's Integral Formula.

Remark. $\{f_n\}_{n=1}^{\infty}$ converges to the zero function uniformly on $\partial B_r(a)$ means that

$$\lim_{n \to \infty} \sup_{z \in \partial B_r(a)} |f_n(z)| = 0 .$$

Homework 39

Problem Source: Quals 1995. Let $f \in H(\mathbb{C})$ satisfy, for some constants $A, B \in \mathbb{R}$ and $k \in \mathbb{N}$,

 $|f(z)| \leq A |z|^k + B$

for each $z \in \mathbb{C}$. Prove that f is a polynomial.

Homework 40

Problem Source: Quals 1995. Let G be an open connected subset of \mathbb{C} . Let $\{f_n\}_{n=1}^{\infty}$ be a sequence from H(G) and $f: G \to \mathbb{C}$ be a function satisfying

for each compact subset K of G,

the functions $\{f_n|_K\}_{n=1}^{\infty}$ converge uniformly on K to $f|_K$.

Show that $f \in H(G)$.

(40.1)

Problem Source: Quals 2000. Let f be an entire function such that, for some M > 0,

 $|f(z)| \le M e^{\operatorname{Re} z} \qquad \forall z \in \mathbb{C} \;.$

Show that there exists $K \in \mathbb{C}$ such that $f(z) = Ke^{z}$.

Homework 42

Problem Source: Quals 1999. Show that

$$\int_0^{\pi} e^{\cos\theta} \cos\left(\sin\theta\right) \, d\theta \; = \; \pi \; .$$

Hint. Consider $\int_{\gamma} \frac{e^z}{z} dz$ where $\gamma \colon [0, 2\pi] \to \mathbb{C}$ is given by $\gamma(\theta) = e^{i\theta}$.

Homework 43

Problem Source: Quals 1997. Let γ^* be as in Figure 1 below. Find

$$\int_{\gamma} \frac{1+z+z^3}{z(z-1)(z-i)} \, dz$$

