Prof. Girardi		Math 70	03 Fall 2012	11.26.12	Exam 1
MARK BOX					
PROBLEM	POINTS				
0	40				
1	20				
2	20		NAME:		
3	20				
4	20				
5	20				
%	100				

INSTRUCTIONS:

- (1) Do Problem 0. Do $\mathbf{3}$ of the problems: 1, 2, 3, 4, and 5.
- (2) Use complete sentences.
- (3) When asked to show, this really means carefully show. Write out details.
- (4) Write your solutions on the provided unlined or lined homemade Blue Book paper. You do not need to recopy the statement of the problem (just use LTGBG).
 - Start each new problem on a new sheet of paper.
 - Write on only one side of a sheet of paper.

• On the top of each page put the problem number and your (first is enough) name.

(5) When finished:

- put your pages in order with this exam paper on top
- staple them together
- in the MARK BOX above, circle the problem that you chose to do.

Then hand in your completed homemade Blue Book.

- (6) The MARK BOX indicates the problems along with their points. This test is copied 2-sided.
- (7) You may **not** use any electronic devices, books, or personal notes.

Problem Source:

- (1) [K]. Prop. 2.16, Prop. 2.19, and Prop. 2.30.
- (2) [K]. Prop. 2.41.
- (3) Homework 13.
- (4) [K]. Prop. 2.47.
- (5) [K]. Prop. 2.49.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.

Furthermore, I have not only read but will also follow the above Instructions.

Signature : _

0a. Let:

 $f: X \to Y$ be a function and $\{x_n\}_{n=1}^{\infty}$ be a sequence in X and $A, D \subset X$.

Carefully define the following concepts. (ps: these definitions will be used on this exam)

- (1) $\{x_n\}_{n=1}^{\infty}$ converges to $x \in X$.
- (2) $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence.
- (3) f is continuous on X (using an ε and not using inverse images of open sets).
- (4) f is uniformly continuous on X.
- (5) f preserves Cauchy sequence.
- (6) X is compact (via open coverings).
- (7) A is a compact subset of X (via sequences, not open coverings, ok, this is really a theorem but can be taken to be a definition).
- (8) X is complete.
- (9) X is connected.
- (10) D is dense in X.
- **0b.** State and prove one of your more favorite results (Thm., Prop., Homework Problem, etc., but <u>not</u> one of the Problems 1–5 below) from the Real Analysis portion of this course.
- **1a.** Let $\emptyset \neq A \subset X$. Define $f: X \to \mathbb{R}$ by

$$f(x) := D(x,A) \stackrel{\text{i.e.}}{=} \inf_{a \in A} d(x,a)$$

Show that f is continuous on X.

- **1b.** Let $\emptyset \neq A \subset X$. Denote the closure of A by \overline{A} . Show that $\overline{A} = \{x \in X : D(x, A) = 0\}$.
- **1c.** Let *E* and *F* be nonempty disjoint closed subsets of *X*. Show that there is a continuous function $f: X \to [0, 1]$ such that *f* is zero exactly on *E* and *f* is 1 exactly on *F*.
- **2.** Let X be compact and $f: X \to Y$ be a continuous function. Show that f is uniformly continuous.
- **3.** Consider a function $f: X \to Y$.
- **3a.** Prove or give a counterexample. If f preserves Cauchy sequences, then f is uniformly continuous.
- **3b.** Let X be compact and Y be complete. Let f preserves Cauchy sequences. Show that f is uniformly continuous.
- **4.** Let D be a dense subset of X and Y be complete. Let $f: D \to Y$ be uniformly continuous. Show
 - (a) f extends <u>uniquely</u> to a continuous function $F: X \to Y$
 - (b) the unique extension F from (a) is uniformly continuous.
- 5. Let X be connected and $f: X \to Y$ be continuous. Show that f(X) is connected.