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“digits” are needed to make B look whole. Another example: B, is disconnected,
although one cannot really tell from the image—a proof is needed. The four upper
right blobs can be separated from the four bottom left ones by a strip that can be
physically measured and seen to be greater than 1,/50. The modulus of b is smaller
than 0.64, so with the powers greater than 13 a gap wider than 0.64'* /(1 — 0.64)
(which is well under 1/50) cannot be bridged. Therefore B, is indeed discon-
nected.

The set of those b for which B is connected is described in [3], where, among
other things, it is proven that % is connected if |6 > V2 /2. Among the Bs shown
in Ficures 1-10, only B, and B, are disconnected.

8. Miscellaneous. A lot of things are left to be explored. When B is connected
and simply connected (see Figs. 7 and 8), is the boundary of fractal dimension
strictly greater than 1 (as it seems)? Is that boundary the image of a continuous
map from [0, 1] in R? (as it seems)? Why does B have B s-like eggs inside it (dark
gray)?

I tried to replace C by the algebra with (a, b) - (¢, d) = (ac + bd, ad + bc), but
got nothing worth showing. Why not?

Acknowledgement. I am grateful to the referees for many suggestions.
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A Characterization of the Cantor Function

DonNALD R. CHALICE
Department of Mathematics, Western Washington University, Bellingham, WA 98225

This note presents a characterization of the Cantor function that might be used
as an alternative or addition to the development usually presented in real analysis
courses. It may also be utilized to give a short program in Mathematica that easily
generates the Cantor function and other similar functions which we call “devil’s
staircases” (see [4]).

THEOREM. Any real-valued function F(x) on [0, 1] that is monotone increasing
and satisfies (a) F(0) = 0, (b) F(x/3) = F(x)/2, and (¢) F1 —x) =1 — F(x), is
the Cantor function.

Before presenting the proof, recall (see [1]) that if we consider the closed
interval [0, 1] and remove the open middle third, (1/3, 2/3), and next remove the
open middle thirds (1,/9, 2/9) and (7/9, 8/9) of the two remaining intervals, and
then remove the open middle thirds of the remaining four intervals and so on,
indefinitely, what remains is the Cantor set C. Alternatively, x is in C iff x has a
base-3 expansion consisting only of the digits 0 and 2.
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The Cantor function G(x) may be defined as follows. First define it on C: if
x=12;2-37", then G(x) = £;27". The function G is monotone and has the
same values at the endpoints of each removed interval, so G extends to a
continuous function on [0, 1] (see Ficure 3(a)).

On [1/3, 2/3], G has value 1/2, on [1/9, 2/9] and [7/9, 8/9], G has values
1/4 and 3/4, respectively. On the intervals [1,/27, 2/27), [7/27, 8,27, [19/27,
20/27), and [25/27, 26/27], the values of G are 1/8, 3/8, 5/8, and 7/8,
respectively. Since G is (locally) constant on some neighborhood of every point in
[0,1] \ C, G'(x) = 0 almost everywhere on [0, 1]. (See [1] or [3].)

Proof of the theorem. First observe that in constructing the Cantor set, the
removed intervals (in base 3) are as given in TaBLE 1. The endpoints of any
removed interval at the nth stage are found by either multiplying those from the
previous stage by .1 (base 3), or by multiplying by .1 and adding .2.

TaBLE 1
Step Values of G Removed Intervals (closures)

1 1/2 [.1,.2]

2 1/4,3/4 [.01,.02], [.21,.22]

3 1/8,3/8 [.001,.002], [.021,.022],
5/8,7/8 [.201,.202], [.221, .222]

4 1/16,3/16 [.0001, .0002], [.0021, .0022],
5/16,7/16 [.0201,.0202], [.0221, .0222]
9/16,11/16 [.2001,.2002], [.2021, .2022],

13/16, 15/16 [.2201,.2202], [.2221, .2222], etc.

Alternatively, any permutation of n — 1 0s and 2s after the ternary point
followed by a 1 or a 2 gives a removed interval at the nth stage.

Recursion is now used to characterize F: By (a) and (c), F(1) = 1, so F(.1) =
1/2. By (b) and (c), F(2) =1 — F(.1) = 1/2; (b) implies F(.01) = F(.02) = 1/4
and (c) implies F(22) = F(.21) = 3/4; (b) then yields the correct values of 1/8,
3/8 on the firsts two intervals at stage 3, while (c) yields the value F(.201) =1 —
F(.022) = 5/8. 1t follows by induction that F and G agree on a dense subset of
[0,1]. Since F is monotone increasing and has no jump discontinuities, F is
continuous (because any discontinuity of a monotone function is a jump; see
[1, p. 129]). Thus since F is continuous and agrees with the Cantor function on a
dense set, F is the Cantor function, and the proof is complete.

As an alternative proof of qontinuity, F may be exhibited as a uniform limit of a
sequence of monotone increasing step functions {s,} on [0, 1] with the jumps
converging to 0. For example, define

0 ifx<.1
s(x)y=41/2 ifl<x< .2
1 if 2 <x

and inductively, define
s,-1(3x) /2 ifx<.1
s,(x)=(1/2 ifl<x<2
1-5,(1—-x) if2<x

(assuming s, as defined on the first line). The continuity of F is then a conse-
quence of the following lemma, which may be of independent interest.
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Figure 1(b) Graph of s,. Figure 1(c) Graph of s;.

LemMmA. Let {s,} be a Cauchy sequence in uniform norm of step functions on
[0, 1), each with a finite number of jumps such that the heights of the jumps for s,
converge uniformly to 0. Then s, converges uniformly to a continuous function F on
[0, 11.

Proof. Pick x in[0,1] and ¢ > 0. There exists an integer N such that n,m > N
implies |s,(x) — s5,(x)| < e/4 for all x in [0, 1], and so that the jumps of s, are all
less than ¢/4. Now any s, is uniformly continuous on each interval on which there
is not a jump, so we can pick § so that [x — y| < & implies |sy(x) — sy (V)| < 2¢/4.
Hence, |x —y| < & implies |F(x) — F(y)| < |F(x) — sy(x)l + [sy(x) — sy(p)l +
lsy(y) — F(y)| < &. Thus F is continuous. QED

Since n < m implies [s,(x) = s, (x| <s,_(¥) —s,,_(¥)I/2 where y is one of
3x or 1 — 3x, it then follows inductively that [s,(x) — s,,(x)| < 1/2" when n < m.
Thus {s,} is uniformly Cauchy and the continuity of F follows from the lemma.

Note also that F may be generated by a geometric algorithm, where we begin by
defining F(x) = 1/2 on the interval [.1,.2] and F(0) = 0, F(1) = 1, and where at
each stage of the algorithm we shrink the x axis by a factor of 1/3 and the y axis
by a factor of 1/2 and then flip the resultant graph across the line x = 1/2, and
then again across the line y = 1/2. We see F as coming more into focus at each
stage.

The preceding characterization was used (together with the recursive feature of
Mathematica) to generate FiGures 3(a)-(b) (programmed by Gerald Harnett).
Other “devil’s staircases” were obtained by taking any p > 0 and changing
condition (¢) to (¢): F(1 — x) = 1 — pF(x), for x < 1/3 and condition (b) to (b'):
F(x/3) = F(x)/(p + 1). These generalizations arise as the cumulative distribu-
tion functions of some of the probability measures invariant under the “inverted
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Figure 2(a).

Figure 2(c)

Double flip 2(b) and superimpose on 2(b).
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The Cantor function (p = 1).
FiG. 3a !

V” transformation discussed by Mandelbrot (see [2,4]). Finally, by letting p take
on, for example, the values .01, .1, .3, .5, 1, 4, 10, and 100, one can create a movie
in Mathematica that shows the Cantor function “stressed” by the varying of the

parameter p (see FIGURE 3).
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Figure 2(b)
Shrink 2(a) and superimpose on 2(a).
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Figure 2(d)
Shrink 2(c) and superimpose on 2(c).
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The Cantor function (p = 2).
Fic. 3b
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