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Chapter 3
Differentiation

Introduction
In some of the examples of this chapter the word derivative is
permitted to be applied to the infinite limits

u— w.
h0 hs0 h

However, the term differentzable function is used only in the strict
sense of a function having a finite derivative at each point of its
domain. A function is said to be infinitely differentiable iff it has
(finite) derivatives of all orders at every point of its domain.

The exponential function with base e is alternatively denoted
¢" and exp (2).

As in Chapter 2, all sets, including domains and ranges, will be
assumed to be subsets of ® unless explicit statement to the contrary
is made. This assumption will remain valid through Part I of this
book, that is, through Chapter 8. '

1. A function that is not a derivative.

The signum function (cf. the Introduction, Chapter 1) or, indeed,
any function with jump discontinuities, has no primitive — that is,
fails to be the derivative of any function — since it fails to have the
intermediate value property enjoyed by continuous functions and
derivatives alike (cf. [34], p. 84, Ex. 40). An example of a discon-
tinuous derivative is given next.

; 35
533num gunc Fion

san (+) + R-> K

=it *7
sap N> x=o
U x<¢d

©



[. Functions of a Real Variable

2. A differentiable function with a discontinuous derivative.
The function

7 sin A if 2 #0,
fz) = ¢
0 ifz=0,
has as its derivative the function
.1 1 .
2r sin = — cos — ifx =0,
f’( x) = T T
0 fz=0,
which is discontinuous at the origin.

3. A discontinuous function having everywhere a derivative
(not necessarily finite).

For such an example to exist the definition of derivative must be
extended to include the limits == . If this is done, the discontinuous
signum function (Example 1) has the derivative

@ 0 if z#0,
g(@) =
+o i z=0.

4. A differentiable function having an extreme value at a
point where the derivative does not make a simple change in
sign.
The function )
s .1\ .
z (2+ sm—) ifz =0,
flz) = %
0 ifz=0

has an absolute minimum value at z = 0 . Its derivative is

F(2) xz\:z;x (2 + siné) — €O0S {\ ifx #0,
x) = £
0 ifz =0,

which has both positive and negative values in every neighborhood
of the origin. In no interval of the form (a, 0) or (0, b) is f monotonic.
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3. Differentiation

5. A differentiable function whose derivative is positive at a
point but which is not monotonic in any neighborhood of the
point.

The function

z + 231;2sin1 ifz 0,
flz) = z
(0 ifz=0
has the derivative

1+ 4lﬂcsinl - 2cosl if z =0,
fz) = z z

1 ifz = 0.
In every neighborhood of 0 the function f'(z) has both positive and
negative values.

6. A function whose derivative is finite but unbounded on a
closed interval.
The function

(
f(z) —=—<
(o ifg =0

x%m% if 2 5 0,

has the derivative

2xsin}——gcos}— ifzx =0,

f'(x)=i A
LO ifz =0,

which is unbounded on [—1, 1].
7. A function whose derivative exists and is bounded but pos-
sesses no (absolute) extreme values on a closed interval.
The function
(91746—*Iz sin§3 ifz 0,
flz) = 4
0 fz=0
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I. Funciions of a Real Variable
has the derivative

f—w[ § 1.5y o S 8] :
Fla) = e (4z 2a:)sm:-v—3 24cos5c—3 if 250,

0 if z=0.

In every neighborhood of the origin this derivative has values ar-
bitrarily near both 24 and —24. On the other hand, for 0 < & =
|z ] = 1 (cf. [34], p. 83, Ex. 29),

3

—}z2 _12—{%2 e 2 9
0<e <1 4he <1 16h’

and

3 _ 1 s\ . 8 81 9.3
(4x 5 )sm;:—3 24cos;§|=24+2h.
Therefore 0 < h = 1 implies

If (] <(1- -?ih2> 24 + 9h3> <2—2ra-n) =2
16 2 2

Therefore, on the closed interval [—1, 1] the range of the function

f’ has supremum equal to 24 and infimum equal to —24, and neither

of these numbers is assumed as a value of f'.

8. A function that is everywhere continuous and nowhere
differentiable.

The function |z | is everywhere continuous but it is not dif-
ferentiable at z = 0. By means of translates of this function it is
possible to define everywhere continuous functions that fail to be
differentiable at each point of an arbitrarily given finite set. In the
following paragraph we shall discuss an example using an infinite
set of translates of the function | z |.
he function of Example 21, Chapter 2, is nowhere differentiable.
To see this let a be an arbitrary real number, and for any positive
integer n , choose k, to be either 41 or —4—""1so that | fa(@ + k) —
fal@)| = | ha|. Then |fala + h.) — fu(a) | has this same value
| hy | for all m < n, and vanishes for m > n. Hence the difference
quotient (f(a 4+ h.) — f(a))/hn is an integer that is even if n is even

38

\m\mdec,\ in ”\,Lg g\mwy{cuf @ Mj .



3. Differentiation

and odd if n is odd. Tt follows that

n >+ hn,

cannot exist, and therefore that f'(a) cannot exist as a finite limit.
The first example of a continuous nondifferentiable function was
given by K. W. T. Welerstrass (German, 1815-1897):

-+oc0

flx) = ZO b” cos (a™rzx),

where b is an odd integer and a is such that 0 < @ < 1 and ab >
1 + 3= . The example presented above is a modification of one given
in 1930 by B. L. Van der Waerden (cf. [48], p. 353). There are now
known to be examples of continuous functions that have nowhere a
one-sided finite or infinite derivative. For further discussion of these
examples, and references, see [48], pp. 350-354, [10], pp. 61-62, 115,
126, and [21], vol. II, pp. 401-412.

The present example, as described in Example 21, Chapter 2,
was shown to be nowhere monotonic. For an example of a function
that is everywhere differentiable and nowhere monotonic, see [21],
vol. IT, pp. 412-421. Indeed, this last example gives a very elaborate
construction of a function that is everywhere differentiable and has
a dense set of relative maxima and a dense set of relative minima.

9. A differentiable function for which the law of the mean
fails.

Again, we must go beyond the real number system for the range of
such a function. The complex-valued function of a real variable z,

defined
flz) = cosx + ¢sin z,

is everywhere continuous and differentiable (cf. [34], pp. 509-513),
but there is no interval [a, b], where a < b, such that for some ¢
between a and b,

(cosb + ¢sinb) — (cosa + 7sina) = (—sinf + 1cos £)(b — a).

Assuming that the preceding equation ¢s possible, we equate the
squares of the moduli (absolute values) of the two members:
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beequal to 1 forz < 1, equal to 1 /n on the closed interval
forn =1,2 ...

define f(z) by trans
with appropriate n

I. Functions of a Real Variable

(cosb —cosa)?+ (sinb — sina)? = (b — a)?

or, with the aid of elementary identities:

.2b—a _ (b—a\
Sin 5 = 5 .

Since there is no positive number % such that sin A = h (ef. [34],
p. 78), a contradiction has been obtained.

10. An infinitely differentiable function of x that is positive
for positive x and vanishes for negative x.
The function

. el i x> 0,
flz) = {0 if <0

is infinitely differentiable, all of its derivatives at z = 0 being equal
to O (cf. [34], p. 108, Ex. 52).

11. An infinitely differentiable function that is positive in
the unit interval and vanishes outside.

) = S i 0<z <,
0 otherwise.

12. An infinitely differentiable ‘‘bridging function,” equal to 1
on [1, + =), equal to 0 on (— =, 0], and strictly monotonic on

[0, 1].
o[-z ()]
eXp pexp m lf 0<x<1,
7= =30 it z<0,
1 if z2= 1.

13. An infinitely differentiable monotonic function f such that

Iim f(x) = 0, liinf’(x) # 0.

z-»t+c0

If the word monotonic is deleted there are trivial examples, for
instance (sin z?)/z. For a monotonic example, let f(z) be defined to
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' : [2n — 1, 2n),
» and on the intervening intervals @n, 2n + 1)

latipns of the bridging function of Example 12,
egative factors for changes in the vertical scale.
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2. PFunctions and Limits

21. A continuous function that is nowhere monotonic.

Let fi(x) = |a|for |z| = %, and let fi(z) be defined for other
values of z by periodic continuation with period 1, ie., fi(zx 4+ n) =
fi() for every real number = and integer n. For n > 1 define fulx) =
4*1f1(4~1z), so that for every positive integer 7, f, is a periodic
function of period 4-"+!, and maximum value 3471, Finally, define
fwith domain ®:

He)

i

+c0 ) n—1
1; fn(x) = ’5;1 f:l—(;?_li).

Since | fu(z) | £ %-4=*!, by the Weierstrass M-test this series con-
verges uniformly on ®, and f is everywhere continuous. For any

point a of the form a = k - 4™, where k is an integer and m is a

positive integer, f,(a) = 0 for n > m, and hence fl@) = fil@) + ---
+ fnla). For any positive integer m, let k. be the positive number
4==1 Then fu(a + hn) = 0 for n > 2m + 1, and hence

fa + hn) — f(@) = [fia + hn) — fil@)] + - --
+ [fnl@ + hn) — fu(a)]
+ forle + ha) + -+ fompia + R
2 —Mhm + (m + Dby = hn > 0.

il

Similarly,
fla = hn) = f@) 2 —mhn + (M + Dhn = hn > 0.

Since members of the form a = k-4-™ are dense, it follows that in
no open interval is f monotonic.

The above typifies constructions involving the condensation of
singularities.
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