
13. Prove that n < 2n for all n 2 N .
14. Prove that 2n < n! for all n 
 4, n 2 N .
15. Prove that 2n� 3 � 2n�2 for all n 
 5, n 2 N .
16. Find all natural numbers n such that n2 < 2n. Prove your assertion.

17. Find the largest natural number m such that n3 � n is divisible by m for all n 2 N . Prove your
assertion.

18. Prove that 1=
ffiffiffi
1

p
þ 1=

ffiffiffi
2

p
þ � � �þ 1=

ffiffiffi
n

p
>

ffiffiffi
n

p
for all n 2 N , n > 1.

19. Let S be a subset of N such that (a) 2k 2 S for all k 2 N , and (b) if k 2 S and k 
 2, then

k � 1 2 S. Prove that S ¼ N .
20. Let the numbers xn be defined as follows: x1 :¼ 1, x2 :¼ 2, and xnþ2 :¼ 1

2
xnþ1 þ xnð Þ for all

n 2 N . Use the Principle of Strong Induction (1.2.5) to show that 1 � xn � 2 for all n 2 N .

Section 1.3 Finite and Infinite Sets

When we count the elements in a set, we say ‘‘one, two, three, . . . ,’’ stopping when we

have exhausted the set. From a mathematical perspective, what we are doing is defining a

bijective mapping between the set and a portion of the set of natural numbers. If the set is

such that the counting does not terminate, such as the set of natural numbers itself, then we

describe the set as being infinite.

The notions of ‘‘finite’’ and ‘‘infinite’’ are extremely primitive, and it is very likely that

the reader has never examined these notions very carefully. In this section we will define

these terms precisely and establish a few basic results and state some other important

results that seem obvious but whose proofs are a bit tricky. These proofs can be found in

Appendix B and can be read later.

1.3.1 Definition (a) The empty set ; is said to have 0 elements.

(b) If n 2 N , a set S is said to have n elements if there exists a bijection from the set

Nn :¼ 1; 2; . . . ; nf g onto S.

(c) A set S is said to be finite if it is either empty or it has n elements for some n 2 N .
(d) A set S is said to be infinite if it is not finite.

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n

elements if and only if there is a bijection from S onto the set {1, 2, . . . , n}. Also,

since the composition of two bijections is a bijection, we see that a set S1 has n

elements if and only if there is a bijection from S1 onto another set S2 that has n

elements. Further, a set T1 is finite if and only if there is a bijection from T1 onto

another set T2 that is finite.

It is now necessary to establish some basic properties of finite sets to be sure that the

definitions do not lead to conclusions that conflict with our experience of counting. From

the definitions, it is not entirely clear that a finite set might not have n elements for more

than one value of n. Also it is conceivably possible that the set N :¼ f1; 2; 3; . . .gmight be

a finite set according to this definition. The reader will be relieved that these possibilities do

not occur, as the next two theorems state. The proofs of these assertions, which use the

fundamental properties of N described in Section 1.2, are given in Appendix B.

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a

unique number in N .
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1.3.3 Theorem The set N of natural numbers is an infinite set.

The next result gives some elementary properties of finite and infinite sets.

1.3.4 Theorem (a) If A is a set with m elements and B is a set with n elements and if

A \ B ¼ ; , then A [ B has m þ n elements.

(b) If A is a set with m 2 N elements and C � A is a set with 1 element, then AnC is a set

with m � 1 elements.

(c) If C is an infinite set and B is a finite set, then CnB is an infinite set.

Proof. (a) Let f be a bijection of Nm onto A, and let g be a bijection of Nn onto B. We

define h on Nmþn by h(i) :¼ f (i) for i ¼ 1; . . . ; m and h(i) :¼ g(i � m) for

i ¼ mþ 1; . . . ; mþ n. We leave it as an exercise to show that h is a bijection from

Nmþn onto A [ B.

The proofs of parts (b) and (c) are left to the reader, see Exercise 2. Q.E.D.

It may seem ‘‘obvious’’ that a subset of a finite set is also finite, but the assertion must

be deduced from the definitions. This and the corresponding statement for infinite sets are

established next.

1.3.5 Theorem Suppose that S and T are sets and that T � S.

(a) If S is a finite set, then T is a finite set.

(b) If T is an infinite set, then S is an infinite set.

Proof. (a) If T ¼ ;, we already know that T is a finite set. Thus we may suppose that

T 6¼ ;. The proof is by induction on the number of elements in S.

If S has 1 element, then the only nonempty subset T of Smust coincide with S, so T is a

finite set.

Suppose that every nonempty subset of a set with k elements is finite. Now let S be a

set having k þ 1 elements (so there exists a bijection f of Nkþ1 onto S), and let T � S. If

f k þ 1ð Þ =2 T , we can consider T to be a subset of S1 :¼ Sn f k þ 1ð Þf g, which has k

elements by Theorem 1.3.4(b). Hence, by the induction hypothesis, T is a finite set.

On the other hand, if f k þ 1ð Þ 2 T , then T1 :¼ Tn f k þ 1ð Þf g is a subset of S1. Since
S1 has k elements, the induction hypothesis implies that T1 is a finite set. But this implies

that T ¼ T1 [ f k þ 1ð Þf g is also a finite set.

(b) This assertion is the contrapositive of the assertion in (a). (See Appendix A for a

discussion of the contrapositive.) Q.E.D.

Countable Sets

We now introduce an important type of infinite set.

1.3.6 Definition (a) A set S is said to be denumerable (or countably infinite) if there

exists a bijection of N onto S.

(b) A set S is said to be countable if it is either finite or denumerable.

(c) A set S is said to be uncountable if it is not countable.

From the properties of bijections, it is clear that S is denumerable if and only if there

exists a bijection of S onto N . Also a set S1 is denumerable if and only if there exists a
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bijection from S1 onto a set S2 that is denumerable. Further, a set T1 is countable if and only

if there exists a bijection from T1 onto a set T2 that is countable. Finally, an infinite

countable set is denumerable.

1.3.7 Examples (a) The setE :¼ 2n : n 2 Nf gof even natural numbers is denumerable,

since the mapping f : N ! E defined by f (n) :¼ 2n for n 2 N is a bijection of N onto E.

Similarly, the set O :¼ 2n� 1 : n 2 Nf g of odd natural numbers is denumerable.

(b) The set Z of all integers is denumerable.

To construct a bijection of N onto Z, we map 1 onto 0, we map the set of even natural

numbers onto the setN of positive integers, and wemap the set of odd natural numbers onto

the negative integers. This mapping can be displayed by the enumeration:

Z ¼ 0; 1; � 1; 2; � 2; 3; � 3; . . .f g:
(c) The union of two disjoint denumerable sets is denumerable.

Indeed, if A ¼ a1; a2; a3; . . .f g and B ¼ b1; b2; b3; . . .f g, we can enumerate the

elements of A [ B as:

a1; b1; a2; b2; a3; b3; . . . :
&

1.3.8 Theorem The set N � N is denumerable.

Informal Proof. Recall that N � N consists of all ordered pairs (m, n), where m, n 2 N .
We can enumerate these pairs as:

1; 1ð Þ; 1; 2ð Þ; 2; 1ð Þ; 1; 3ð Þ; 2; 2ð Þ; 3; 1ð Þ; 1; 4ð Þ; . . . ;
according to increasing sum m þ n, and increasing m. (See Figure 1.3.1.) Q.E.D.

The enumeration just described is an instance of a ‘‘diagonal procedure,’’ since we

move along diagonals that each contain finitely many terms as illustrated in Figure 1.3.1.

The bijection indicated by the diagram can be derived as follows. We first notice that

the first diagonal has one point, the second diagonal has two points, and so on, with k points

in the kth diagonal. Applying the formula in Example 1.2.4(a), we see that the total number

of points in diagonals 1 through k is given by

c kð Þ ¼ 1þ 2þ � � �þ k ¼ 1
2
k k þ 1ð Þ

Figure 1.3.1 The set N � N
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The point (m, n) lies in the kth diagonal when k¼mþ n� 1, and it is themth point in

that diagonal as we move downward from left to right. (For example, the point (3, 2) lies

in the 4th diagonal since 3þ 2� 1¼ 4, and it is the 3rd point in that diagonal.) Therefore,

in the counting scheme displayed by Figure 1.3.1, we count the point (m, n) by first

counting the points in the first k� 1¼mþ n� 2 diagonals and then addingm. Therefore,

the counting function h : N � N ! N is given by

h m; nð Þ :¼ c mþ n� 2ð Þ þm

¼ 1
2
mþ n� 2ð Þ mþ n� 1ð Þ þm:

For example, the point (3, 2) is counted as number h 3; 2ð Þ ¼ 1
2
� 3 � 4þ 3 ¼ 9, as

shown by Figure 1.3.1. Similarly, the point (17, 25) is counted as number h (17, 25)¼ c(40)
þ 17 ¼ 837.

This geometric argument leading to the counting formula has been suggestive and

convincing, but it remains to be proved that h is, in fact, a bijection of N � N onto N .
A detailed proof is given in Appendix B.

The construction of an explicit bijection between sets is often complicated. The next

two results are useful in establishing the countability of sets, since they do not involve

showing that certain mappings are bijections. The first result may seem intuitively clear,

but its proof is rather technical; it will be given in Appendix B.

1.3.9 Theorem Suppose that S and T are sets and that T � S.

(a) If S is a countable set, then T is a countable set.

(b) If T is an uncountable set, then S is an uncountable set.

1.3.10 Theorem The following statements are equivalent:

(a) S is a countable set.

(b) There exists a surjection of N onto S.

(c) There exists an injection of S into N .

Proof. (a) ) (b) If S is finite, there exists a bijection h of some set Nn onto S and we

define H on N by

HðkÞ :¼ hðkÞ for k ¼ 1; . . . ; n;
hðnÞ for k > n:

	

Then H is a surjection of N onto S.

If S is denumerable, there exists a bijectionH of N onto S, which is also a surjection of

N onto S.

(b) ) (c) If H is a surjection of N onto S, we define H1 : S ! N by letting H1(s) be the

least element in the set H�1ðsÞ :¼ n 2 N : HðnÞ ¼ sf g. To see that H1 is an injection of S

into N , note that if s, t 2 S and nst :¼ H1ðsÞ ¼ H1ðtÞ, then s ¼ H(nst) ¼ t.

(c) ) (a) If H1 is an injection of S into N , then it is a bijection of S onto H1ðSÞ � N . By
Theorem 1.3.9(a), H1(S) is countable, whence the set S is countable. Q.E.D.

1.3.11 Theorem The set Q of all rational numbers is denumerable.

Proof. The idea of the proof is to observe that the set Qþ of positive rational numbers is

contained in the enumeration:

1
1
; 1

2
; 2

1
; 1

3
; 2

2
; 3

1
; 1

4
; . . . ;
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which is another ‘‘diagonal mapping’’ (see Figure 1.3.2). However, this mapping is not an

injection, since the different fractions 1
2
and 2

4
represent the same rational number.

To proceed more formally, note that since N � N is countable (by Theorem 1.3.8), it

follows from Theorem 1.3.10(b) that there exists a surjection f of N onto N � N . If g :
N � N ! Qþ is the mapping that sends the ordered pair (m, n) into the rational number

having a representationm=n, then g is a surjection ontoQþ. Therefore, the composition g 	 f
is a surjection of N onto Qþ, and Theorem 1.3.10 implies that Qþ is a countable set.

Similarly, the set Q� of all negative rational numbers is countable. It follows as in

Example 1.3.7(b) that the set Q ¼ Q� [ f0g [ Qþ is countable. Since Q contains N , it
must be a denumerable set. Q.E.D.

The next result is concerned with unions of sets. In view of Theorem 1.3.10, we need

not be worried about possible overlapping of the sets. Also, we do not have to construct a

bijection.

1.3.12 Theorem If Am is a countable set for each m 2 N, then the union A :¼ S1
m¼1 Am

is countable.

Proof. For eachm 2 N , let wm be a surjection ofN onto Am. We define b : N � N ! A by

bðm; nÞ :¼ wmðnÞ:
We claim that b is a surjection. Indeed, if a 2 A, then there exists a least m 2 N such that

a 2 Am, whence there exists a least n 2 N such that a ¼ wmðnÞ. Therefore, a ¼ b (m, n).

Since N � N is countable, it follows from Theorem 1.3.10 that there exists a surjection

f : N ! N � N whence b 	 f is a surjection of N onto A. Now apply Theorem 1.3.10 again

to conclude that A is countable. Q.E.D.

Remark A less formal (but more intuitive) way to see the truth of Theorem 1.3.12 is to

enumerate the elements of Am, m 2 N , as:

A1 ¼ a11; a12; a13; . . .f g;
A2 ¼ a21; a22; a23; . . .f g;
A3 ¼ a31; a32; a33; . . .f g;

� � � � � � � � � :

Figure 1.3.2 The set Qþ

20 CHAPTER 1 PRELIMINARIES



We then enumerate this array using the ‘‘diagonal procedure’’:

a11; a12; a21; a13; a22; a31; a14; . . . ;

as was displayed in Figure 1.3.1.

Georg Cantor
Georg Cantor (1845–1918) was born in St. Petersburg, Russia. His father,

a Danish businessman working in Russia, moved the family to Germany

several years later. Cantor studied briefly at Zurich, then went to the

University of Berlin, the best in mathematics at the time. He received his

doctorate in 1869, and accepted a position at the University of Halle,

where he worked alone on his research, but would occasionally travel the

seventy miles to Berlin to visit colleagues.

Cantor is known as the founder of modern set theory and he was the first to study the

concept of infinite set in rigorous detail. In 1874 he proved that Q is countable and, in

contrast, that R is uncountable (see Section 2.5), exhibiting two kinds of infinity. In a series of

papers he developed a general theory of infinite sets, including some surprising results. In

1877 he proved that the two-dimensional unit square in the plane could be put into one-one

correspondence with the unit interval on the line, a result he sent in a letter to his colleague

Richard Dedekind in Berlin, writing ‘‘I see it, but I do not believe it.’’ Cantor’s Theorem on

sets of subsets shows there are many different orders of infinity and this led him to create a

theory of ‘‘transfinite’’ numbers that he published in 1895 and 1897. His work generated

considerable controversy among mathematicians of that era, but in 1904, London’s Royal

Society awarded Cantor the Sylvester Medal, its highest honor.

Beginning in 1884, he suffered from episodes of depression that increased in severity as the

years passed. Hewas hospitalized several times for nervous breakdowns in the Halle Nervenklinik

and spent the last seven months of his life there.

We close this section with one of Cantor’s more remarkable theorems.

1.3.13 Cantor’s Theorem If A is any set, then there is no surjection of A onto the set

PðAÞ of all subsets of A.

Proof. Suppose that w : A ! PðAÞ is a surjection. Since w(a) is a subset of A, either a

belongs to w(a) or it does not belong to this set. We let

D :¼ a 2 A : a =2 wðaÞf g:

Since D is a subset of A, if w is a surjection, then D ¼ w a0ð Þ for some a0 2 A.

We must have either a0 2 D or a0 =2 D. If a0 2 D, then since D ¼ w a0ð Þ, we must have

a0 2 w a0ð Þ, contrary to the definition of D. Similarly, if a0 =2 D, then a0 =2 w a0ð Þ so that

a0 2 D, which is also a contradiction.

Therefore, w cannot be a surjection. Q.E.D.

Cantor’s Theorem implies that there is an unending progression of larger and larger

sets. In particular, it implies that the collection PðNÞ of all subsets of the natural numbers

N is uncountable.
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Exercises for Section 1.3

1. Prove that a nonempty set T1 is finite if and only if there is a bijection from T1 onto a finite set T2.

2. Prove parts (b) and (c) of Theorem 1.3.4.

3. Let S :¼ {1, 2} and T :¼ {a, b, c}.

(a) Determine the number of different injections from S into T.

(b) Determine the number of different surjections from T onto S.

4. Exhibit a bijection between N and the set of all odd integers greater than 13.

5. Give an explicit definition of the bijection f from N onto Z described in Example 1.3.7(b).

6. Exhibit a bijection between N and a proper subset of itself.

7. Prove that a set T1 is denumerable if and only if there is a bijection from T1 onto a denumerable

set T2.

8. Give an example of a countable collection of finite sets whose union is not finite.

9. Prove in detail that if S and T are denumerable, then S [ T is denumerable.

10. (a) If (m, n) is the 6th point down the 9th diagonal of the array in Figure 1.3.1, calculate its

number according to the counting method given for Theorem 1.3.8.

(b) Given that h(m, 3) ¼ 19, find m.

11. Determine the number of elements in PðSÞ, the collection of all subsets of S, for each of the

following sets:

(a) S :¼ {1, 2},

(b) S :¼ {1, 2, 3},

(c) S :¼ {1, 2, 3, 4}.

Be sure to include the empty set and the set S itself in PðSÞ.
12. Use Mathematical Induction to prove that if the set S has n elements, then PðSÞ has 2n elements.

13. Prove that the collection FðNÞ of all finite subsets of N is countable.
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APPENDIX B

FINITE AND COUNTABLE SETS

We will establish the results that were stated in Section 1.3 without proof. The reader

should refer to that section for the definitions.

The first result is sometimes called the ‘‘Pigeonhole Principle.’’ It may be interpreted

as saying that if m pigeons are put into n pigeonholes and if m > n, then at least two

pigeons must share one of the pigeonholes. This is a frequently used result in combinatorial

analysis. It yields many useful consequences.

B.1 Theorem Let m; n 2 N with m > n. Then there does not exist an injection from Nm

into Nn.

Proof. We will prove this by induction on n.

If n ¼ 1 and if g is any map of Nmðm > 1Þ into N1, then it is clear that gð1Þ ¼ � � � ¼
gðmÞ ¼ 1, so that g is not injective.

Assume that k > 1 is such that if m > k, there is no injection from Nm into Nk. We

will show that if m > k þ 1, there is no function h : Nm ! Nkþ1 that is an injection.

Case 1: If the range hðNmÞ � Nk � Nkþ1, then the induction hypothesis implies that h is

not an injection of Nm into Nk, and therefore into Nkþ1.

Case 2: Suppose that hðNmÞ is not contained in Nk. If more than one element in Nm

is mapped into k þ 1, then h is not an injection. Therefore, we may assume that a single

p 2 Nm is mapped into k þ 1 by h. We now define h1 : Nm�1 ! Nk by

h1ðqÞ :¼ hðqÞ if q ¼ 1; . . . ; p� 1;
hðqþ 1Þ if q ¼ p; . . . ;m� 1:

	

Since the induction hypothesis implies that h1 is not an injection into Nk, it is easily seen

that h is not an injection into Nkþ1. Q.E.D.

We now show that a finite set determines a unique number in N .

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a

unique number in N .

Proof. If the set S hasm elements, there exists a bijection f 1 of Nm onto S. If S also has n

elements, there exists a bijection f 2 of Nn onto S. If m > n, then (by Exercise 21

of Section 1.1) f�1
2 	 f 1, is a bijection of Nm onto Nn, which contradicts Theorem B.1.

If n > m, then f�1
1 	 f 2 is a bijection of Nn onto Nm, which contradicts Theorem B.1.

Therefore we have m ¼ n. Q.E.D.

B.2 Theorem If n 2 N , there does not exist an injection from N into Nn.

Proof. Assume that f : N ! Nn is an injection, and letm :¼ nþ 1. Then the restriction of

f to Nm � N is also an injection into Nn. But this contradicts Theorem B.1. Q.E.D.
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1.3.3 Theorem The set N of natural numbers is an infinite set.

Proof. If N is a finite set, there exists some n 2 N and a bijection f of Nn onto N . In this

case the inverse function f�1 is a bijection (and hence an injection) of N onto Nn. But this

contradicts Theorem B.2. Q.E.D.

We will next establish Theorem 1.3.8. In connection with the array displayed in

Figure 1.3.1, the function h was defined by hðm; nÞ ¼ cðmþ n� 2Þ þm, where

cðkÞ ¼ 1þ 2þ � � �þ k ¼ 1
2
kðk þ 1Þ. We now prove that the function h is a bijection.

1.3.8 Theorem The set N � N is denumerable.

Proof. We will show that the function h is a bijection.

(a) We first show that h is injective. If ðm; nÞ 6¼ ðm0; n0Þ, then either (i) mþ n 6¼
m0 þ n0, or (ii) mþ n ¼ m0 þ n0 and m 6¼ m0.

In case (i), we may supposemþ n < m0 þ n0. Then, using formula (1), the fact that c

is increasing, and m0 > 0, we have

hðm; nÞ ¼ c ðmþ n� 2Þ þm � c ðmþ n� 2Þ þ ðmþ n� 1Þ
¼ c ðmþ n� 1Þ � c ðm0 þ n0 � 2Þ
< c ðm0 þ n0 � 2Þ þm0 ¼ hðm0; n0Þ:

In case (ii), if mþ n ¼ m0 þ n0 and m 6¼ m0, then

hðm; nÞ�m ¼ cðmþ n� 2Þ ¼ cðm0 þ n0 � 2Þ ¼ hðm0; n0Þ�m0;

whence hðm; nÞ 6¼ hðm0; n0Þ.
(b) Next we show that h is surjective.

Clearly hð1; 1Þ ¼ 1. If p 2 N with p 
 2, we will find a pair ðmp; npÞ 2 N � N with

hðmp; npÞ ¼ p. Since p < c ðpÞ, then the set Ep :¼ fk 2 N : p � c ðkÞg is nonempty.

Using theWell-Ordering Property 1.2.1, we let kp > 1 be the least element in Ep. (This

means that p lies in the kpth diagonal.) Since p 
 2, it follows from equation (1) that

c ðkp � 1Þ < p � c ðkpÞ ¼ c ðkp � 1Þ þ kp:

Let mp :¼ p� c ðkp � 1Þ so that 1 � mp � kp, and let np :¼ kp �mp þ 1 so that 1 �
np � kp and mp þ np � 1 ¼ kn. Therefore,

hðmp; npÞ ¼ cðmp þ np � 2Þ þmp ¼ c ðkp � 1Þ þmp ¼ p:

Thus h is a bijection and N � N is denumerable. Q.E.D.

The next result is crucial in proving Theorems 1.3.9 and 1.3.10.

B.3 Theorem If A � N and A is infinite, there exists a function w : N ! A such that

wðnþ 1Þ > wðnÞ 
 n for all n 2 N . Moreover, w is a bijection of N onto A.

Proof. Since A is infinite, it is not empty. Wewill use the Well-Ordering Property 1.2.1 of

N to give a recursive definition of w.

Since A 6¼ 0, there is a least element of A, which we define to be wð1Þ; therefore,
wð1Þ 
 1.

Since A is infinite, the set A1 :¼ Anfwð1Þg is not empty, and we define wð2Þ to be least
element of A1. Therefore wð2Þ > wð1Þ 
 1, so that wð2Þ 
 2.
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Suppose that w has been defined to satisfy wðnþ 1Þ > wðnÞ 
 n for n ¼ 1; . . . ; k � 1,

whence wðkÞ > wðk � 1Þ 
 k � 1 so that wðkÞ 
 k. Since the set A is infinite, the set

Ak :¼ Anfwð1Þ; . . . ;wðkÞg
is not empty and we define wðk þ 1Þ to be the least element in Ak. Therefore wðk þ 1Þ >
wðkÞ, and since wðkÞ 
 k, we also have wðk þ 1Þ 
 k þ 1. Therefore, w is defined on all

of N .
We claim that w is an injection. If m > n, then m ¼ nþ r for some r 2 N . If

r ¼ 1, then wðmÞ ¼ wðnþ 1Þ > wðnÞ. Suppose that wðnþ kÞ > wðnÞ; we will show that

wðnþ ðk þ 1ÞÞ > wðnÞ. Indeed, this follows from the fact that wðnþ ðk þ 1ÞÞ ¼ wððnþ
kÞ þ 1Þ > wðnþ kÞ > wðnÞ. Since wðmÞ > wðnÞ whenever m > n, it follows that w is an

injection.

We claim that w is a surjection of N onto A. If not, the set ~A :¼ AnwðNÞ is not empty,

and we let p be the least element in ~A. We claim that p belongs to the set fwð1Þ; . . . ;wðpÞg.
Indeed, if this is not true, then

p 2 Anfwð1Þ; . . . ;wðpÞg ¼ Ap;

so that wðpþ 1Þ, being the least element in Ap, must satisfy wðpþ 1Þ � p. But this

contradicts the fact that wðpþ 1Þ > wðpÞ 
 p. Therefore ~A is empty and w is a surjection

onto A. Q.E.D.

B.4 Theorem If A � N , then A is countable.

Proof. If A is finite, then it is countable, so it suffices to consider the case that A is infinite.

In this case, Theorem B.3 implies that there exists a bijection w of N onto A, so that A is

denumerable and, therefore, countable. Q.E.D.

1.3.9 Theorem Suppose that S and T are sets and that T � S.

(a) If S is a countable set, then T is a countable set.

(b) If T is an uncountable set, then S is an uncountable set.

Proof. (a) If S is a finite set, it follows from Theorem 1.3.5(a) that T is finite, and

therefore countable. If S is denumerable, then there exists a bijection c of S onto N . Since
cðSÞ � N , Theorem B.4 implies that cðSÞ is countable. Since the restriction of c to T is a

bijection onto cðTÞ and cðTÞ � N is countable, it follows that T is also countable.

(b) This assertion is the contrapositive of the assertion in (a). Q.E.D.

APPENDIX B FINITE AND COUNTABLE SETS 359



then for any e > 0, there exists an m 2 N such that 0 � h� j � bm � am < e. Since this

holds for all e > 0, it follows from Theorem 2.1.9 that h� j ¼ 0. Therefore, we conclude

that j ¼ h is the only point that belongs to In for every n 2 N. Q.E.D.

The Uncountability of R

The concept of a countable set was discussed in Section 1.3 and the countability of the set

Q of rational numbers was established there. We will now use the Nested Interval Property

to prove that the set R is an uncountable set. The proof was given by Georg Cantor in 1874

in the first of his papers on infinite sets. He later published a proof that used decimal

representations of real numbers, and that proof will be given later in this section.

2.5.4 Theorem The set R of real numbers is not countable.

Proof. We will prove that the unit interval I :¼ 0; 1½ 	 is an uncountable set. This implies

that the set R is an uncountable set, for if R were countable, then the subset Iwould also be

countable. (See Theorem 1.3.9(a).)

The proof is by contradiction. If we assume that I is countable, then we can enumerate

the set as I ¼ x1; x2; . . . ;xn; . . .f g. We first select a closed subinterval I1 of I such that

x1 =2 I1, then select a closed subinterval I2 of I1 such that x2 =2 I2, and so on. In this way, we

obtain nonempty closed intervals

I1 
 I2 
 � � � 
 In 
 � � �
such that In � I and xn =2 In for all n. The Nested Intervals Property 2.5.2 implies that there

exists a point j 2 I such that j 2 In for all n. Therefore j 6¼ xn for all n 2 N , so the

enumeration of I is not a complete listing of the elements of I, as claimed. Hence, I is an

uncountable set. Q.E.D.

The fact that the setR of real numbers is uncountable can be combined with the fact that

the setQ of rational numbers is countable to conclude that the setRnQ of irrational numbers

is uncountable. Indeed, since the union of two countable sets is countable (see 1.3.7(c)), if

RnQ is countable, then since R ¼ Q [ RnQð Þ, we conclude that R is also a countable set,

which is a contradiction. Therefore, the set of irrational numbers RnQ is an uncountable set.

Note: The set of real numbers can also be divided into two subsets of numbers called

algebraic numbers and transcendental numbers. A real number is called algebraic if it is a

solution of a polynomial equation P xð Þ ¼ 0 where all the coefficients of the polynomial P

are integers. A real number is called transcendental if it is not an algebraic number. It can

be proved that the set of algebraic numbers is countably infinite, and consequently the set of

transcendental numbers is uncountable. The numbers p and e are transcendental numbers,

but the proofs of these facts are very deep. For an introduction to these topics, we refer the

interested reader to the book by Ivan Niven listed in the References.

yBinary Representations

Wewill digress briefly to discuss informally the binary (and decimal) representations of real

numbers. It will suffice to consider real numbers between 0 and 1, since the representations

for other real numbers can then be obtained by adding a positive or negative number.

yThe remainder of this section can be omitted on a first reading.
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