In this handout,

$$
A \text { and } B \text { are nonempty bounded subsets of } \mathbb{R} \quad \text { and } \quad r \in \mathbb{R} .
$$

Notation

$$
\begin{aligned}
-A & :=\{-a \in \mathbb{R}: a \in A\} \\
r+A & :=\{r+a \in \mathbb{R}: a \in A\} \\
r A & :=\{r a \in \mathbb{R}: a \in A\} \\
A+B & :=\{a+b \in \mathbb{R}: a \in A, b \in B\} \\
A B & :=\{a b \in \mathbb{R}: a \in A, b \in B\} \quad \text { (Not commonly used notation but let's use for this handout.) }
\end{aligned}
$$

Results for Max/Min

If $\max A$ exists, then $\quad \min \left({ }^{-} A\right)={ }^{-}(\max A)$.

$$
\begin{gather*}
\text { Results for Sup/Inf } \\
\begin{array}{c}
\inf \left({ }^{-} A\right)={ }^{-}(\sup A) \\
\sup \left({ }^{-} A\right)={ }^{-}(\inf A)
\end{array} \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
\inf (r+A)=r+(\inf A) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\sup (r+A)=r+(\sup A) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\inf (A+B)=(\inf A)+(\inf B) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\sup (A+B)=(\sup A)+(\sup B) \tag{8}
\end{equation*}
$$

$$
\begin{array}{lr}
\text { for } r \geq 0: & \inf (r A)=r(\inf A) \\
\text { for } r \geq 0 \text { : } & \sup (r A)=r(\sup A) \\
& \\
\text { for } r \leq 0: & \inf (r A)=r(\sup A) \\
\text { for } r \leq 0 \text { : } & \sup (r A)=r(\inf A) \\
& \tag{14}\\
\text { for } A, B \subset[0, \infty): & \inf (A B)=(\inf A)(\inf B) \\
\text { for } A, B \subset[0, \infty): & \sup (A B)=(\sup A)(\sup B)
\end{array}
$$

