Bounded Sequences

- **Def.** A sequence $\{s_n\}_n$ is **bounded below** provided $(\exists L \in \mathbb{R}) \ (\forall n \in \mathbb{N}) \ [L \leq s_n].$ (such an L is called a <u>lower bound</u> of $\{s_n\}_n$)
- **Def.** A sequence $\{s_n\}_n$ is **bounded above** provided $(\exists U \in \mathbb{R}) \ (\forall n \in \mathbb{N}) \ [s_n \leq U]$. (such an U is called a <u>upper bound</u> of $\{s_n\}_n$)
- **Def.** A sequence $\{s_n\}_n$ is **bounded** provided $\{s_n\}_n$ is bounded above and bounded below.
- Note. A sequence $\{s_n\}_n$ is **bounded** \Leftrightarrow $(\exists M \in \mathbb{R})$ $(\forall n \in \mathbb{N})$ $[|s_n| \leq M] \Leftrightarrow (\exists M \in \mathbb{R}^{>0})$ $(\forall n \in \mathbb{N})$ $[|s_n| \leq M]$. (such an M is called a bound of $\{s_n\}_n$)

Thm. Each convergent sequence is bounded.

Common Technique/Useful Lemma

Lemma. Let $a, b \in \mathbb{R}$.

L1.	a = 0	\iff	$(\forall \varepsilon > 0) [0 \le a < \varepsilon].$	2.1.9 BS4p28 Rmk BS4p28
L2.	a = 0	\iff	$(\forall \varepsilon > 0) \ [\ 0 \le a \le \varepsilon \] \ .$	
L3.	a = b	\iff	$(\forall \varepsilon > 0) [a - b < \varepsilon].$	
L4.	$a \leq b$	\iff	$(\forall \varepsilon > 0) [a - b < \varepsilon].$	

Algebra of Limits

Thm. Let $c \in \mathbb{R}$ and

$$\lim_{n \to \infty} s_n = S \in \mathbb{R}$$
$$\lim_{n \to \infty} t_n = T \in \mathbb{R}$$

Then the following hold.

A1.
$$\lim_{n \to \infty} cs_n = c \left(\lim_{n \to \infty} s_n \right).$$

A2.
$$\lim_{n \to \infty} (s_n + t_n) = \left(\lim_{n \to \infty} s_n \right) + \left(\lim_{n \to \infty} t_n \right).$$

A3.
$$\lim_{n \to \infty} (s_n - t_n) = \left(\lim_{n \to \infty} s_n \right) - \left(\lim_{n \to \infty} t_n \right).$$

A4.
$$\lim_{n \to \infty} (s_n \cdot t_n) = \left(\lim_{n \to \infty} s_n \right) \cdot \left(\lim_{n \to \infty} t_n \right).$$

A5.
$$\lim_{n \to \infty} \frac{s_n}{t_n} = \frac{\lim_{n \to \infty} s_n}{\lim_{n \to \infty} t_n}, \text{ provided } \lim_{n \to \infty} t_n \neq 0 \text{ and } (\forall n) [t_n \neq 0].$$

Sequences and Continuous Functions

Def. Let $x_0 \in I \subseteq \mathbb{R}$ with I an opend interval. The function $f: I \to \mathbb{R}$ is **continuous at** x_0 provided $(\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall x \in I) \ [|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon]$, or equivalently, $(\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall x \in I) \ [x \in N_{\delta}(x_0) \implies f(x) \in N_{\varepsilon}(f(x_0))]$.

Thm. (continuous functions preserve convergent sequences) Let $f: I \to \mathbb{R}$ be a continuous function on an open interval I of \mathbb{R} . Let $\lim_{n \to \infty} s_n = L \in I$ and $\{s_n : n \in \mathbb{N}\} \subset \mathbb{R}$. Then $\lim_{n \to \infty} f(s_n) = (L)$. 3.2.3 BS4p64

Order Properties of Limits

Thm. Let $N_0 \in \mathbb{N}$ and $\alpha, \beta \in \mathbb{R}$ and $\{x_n\}_n$ be a sequence from \mathbb{R} . Let

$$\lim_{n \to \infty} s_n = S \in \mathbb{R}$$
$$\lim_{n \to \infty} t_n = T \in \mathbb{R}$$

Then the following hold.

O1. If $s_n \leq t_n$ for each $n \geq N_0$, then $\lim_{n \to \infty} s_n \leq \lim_{n \to \infty} t_n$.

O2. If
$$\alpha \leq s_n \leq \beta$$
 for each $n \geq N_0$, then $\alpha \leq \lim_{n \to \infty} s_n \leq \beta$.

O3. Squeeze Thm.

I.e

If $s_n \leq x_n \leq t_n$ for each $n \geq N_0$ and $\lim_{n \to \infty} s_n = \lim_{n \to \infty} t_n$, then $\{x_n\}_n$ also converges and $\lim_{n \to \infty} s_n = \lim_{n \to \infty} x_n = \lim_{n \to \infty} t_n$.

O4. The sequence $\{|s_n|\}_n$ converges and $\lim_{n\to\infty} |s_n| = \left| (\lim_{n\to\infty} s_n) \right|$.

O5. The sequence $\{\max\{s_n, t_n\}\}_n$ converges and $\lim_{n \to \infty} (\max\{s_n, t_n\}) = \max\{\lim_{n \to \infty} s_n, \lim_{n \to \infty} t_n\}$. The sequence $\{\min\{s_n, t_n\}\}_n$ converges and $\lim_{n \to \infty} (\min\{s_n, t_n\}) = \min\{\lim_{n \to \infty} s_n, \lim_{n \to \infty} t_n\}$.

Helpful:
$$\max\{s_n, t_n\} = \frac{s_n + t_n}{2} + \frac{|s_n - t_n|}{2}$$
 and $\min\{s_n, t_n\} = \frac{s_n + t_n}{2} - \frac{|s_n - t_n|}{2}$
e., the max $\{a, b\}$ is (the midpt btw $a\&b$) + (half the distance btw $a\&b$).

while the min $\{a, b\}$ is (the midpt btw a&b) - (half the distance btw a&b).

Ratio Test for Sequences

Thm. Let $\{x_n\} n \in \mathbb{N}$ be a sequence of <u>strictly positive</u> real numbers such that

$$L := \lim_{n \to \infty} \frac{x_{n+1}}{x_n} \tag{Ratio}$$

exists and $\underline{L} \leq 1$. Then the sequence $\{x_n\}_{n \in \mathbb{N}}$ converges and $\lim_{n \to \infty} x_n = 0$.

Pf. Pf.'s Idea. Find r s.t. L < r < 1. Find $N \in \mathbb{N}$ s.t. if $n \ge N$ then $\left|\frac{x_{n+1}}{x_n} - L\right| < (r - L)$. So if $n \ge N$ then

$$\frac{x_{n+1}}{x_n} < r \qquad \text{and so} \qquad 0 < x_{n+1} < rx_n$$

and so inductively (use math induction to prove) we get

$$0 < x_{n+1} < r^1 x_n < r^1 \left(r^1 x_{n-1} \right) \stackrel{\text{i.e.}}{=} r^2 x_{n-1} < r^3 x_{n-2} < \cdots < r^{(n-N+1)} x_N \stackrel{\text{i.e.}}{=} r^n \left[r^{1-N} x_N \right] := Cr^n$$

for the constant $C := [r^{1-N}x_N]$. Note $\lim_{n \to \infty} r^n = 0$ since 0 < r < 1. Now apply Squeeze Theorem.

$$3.2.5$$

BS4p65

3.2.6 BS4p66

3.2.7

BS4p66

3.2.9 BS4p68

3.2.11 BS4p69