
Prof. Girardi Sequences: Limit Thm.’s

Bounded Sequences

Def. A sequence {sn}n is bounded below provided (∃L ∈ R) (∀n ∈ N) [ L ≤ sn ].

〈 such an L is called a
::::
lower

::::::
bound of {sn}n 〉

Def. A sequence {sn}n is bounded above provided (∃U ∈ R) (∀n ∈ N) [ sn ≤ U ].

〈 such an U is called a
:::::
upper

::::::
bound of {sn}n 〉

Def. A sequence {sn}n is bounded provided {sn}n is bounded above
::::
and bounded below.

Note. A sequence {sn}n is bounded ⇔ (∃M ∈ R) (∀n ∈ N) [ |sn| ≤M ] ⇔ (∃M ∈ R>0) (∀n ∈ N) [ |sn| ≤M ].

〈 such an M is called a
:::::
bound of {sn}n 〉

Thm. Each convergent sequence is bounded.

Common Technique/Useful Lemma

Lemma. Let a, b ∈ R.

L1. a = 0 ⇐⇒ (∀ε > 0) [ 0 ≤ a < ε ] . 2.1.9
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L2. a = 0 ⇐⇒ (∀ε > 0) [ 0 ≤ a ≤ ε ] . Rmk
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L3. a = b ⇐⇒ (∀ε > 0) [ |a− b| < ε ] .

L4. a ≤ b ⇐⇒ (∀ε > 0) [ a− b < ε ] .

Algebra of Limits

Thm. Let c ∈ R and 3.2.3
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lim
n→∞

sn = S ∈ R

lim
n→∞

tn = T ∈ R

Then the following hold.

A1. lim
n→∞

csn = c
(
lim
n→∞

sn

)
.

A2. lim
n→∞

(sn + tn) =
(
lim
n→∞

sn

)
+
(
lim
n→∞

tn

)
.

A3. lim
n→∞

(sn − tn) =
(
lim
n→∞

sn

)
−
(
lim
n→∞

tn

)
.

A4. lim
n→∞

(sn · tn) =
(
lim
n→∞

sn

)
·
(
lim
n→∞

tn

)
.

A5. lim
n→∞

sn
tn

=
limn→∞ sn
limn→∞ tn

, provided limn→∞ tn 6= 0 and (∀n) [tn 6= 0].

Sequences and Continuous Functions

Def. Let x0 ∈ I ⊆ R with I an opend interval. The function f : I → R is continuous at x0 provided

(∀ε > 0) (∃δ > 0) (∀x ∈ I) [ |x− x0| < δ =⇒ |f (x)− f (x0)| < ε ] , or equivalently,

(∀ε > 0) (∃δ > 0) (∀x ∈ I) [ x ∈ Nδ (x0) =⇒ f (x) ∈ Nε (f (x0)) ] .

Thm. 〈continuous functions preserve convergent sequences 〉

Let f : I → R be a continuous fucntion on an open interval I of R.
Let lim

n→∞
sn = L ∈ I and {sn : n ∈ N} ⊂ R.

Then lim
n→∞

f (sn) = (L).
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Order Properties of Limits

Thm. Let N0 ∈ N and α, β ∈ R and {xn}n be a sequence from R. Let

lim
n→∞

sn = S ∈ R

lim
n→∞

tn = T ∈ R

Then the following hold.

O1. If sn ≤ tn for each n ≥ N0, then lim
n→∞

sn ≤ lim
n→∞

tn. 3.2.5
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O2. If α ≤ sn ≤ β for each n ≥ N0, then α ≤ lim
n→∞

sn ≤ β. 3.2.6
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O3. Squeeze Thm. 3.2.7
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If sn ≤ xn ≤ tn for each n ≥ N0 and lim
n→∞

sn = lim
n→∞

tn,

then {xn}n also converges and lim
n→∞

sn = lim
n→∞

xn = lim
n→∞

tn.

O4. The sequence {|sn|}n converges and lim
n→∞

|sn| =
∣∣∣( lim

n→∞
sn

)∣∣∣. 3.2.9
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O5. The sequence {max {sn, tn}}n converges and lim
n→∞

(max {sn, tn}) = max
{
lim
n→∞

sn, lim
n→∞

tn

}
.

The sequence {min {sn, tn}}n converges and lim
n→∞

(min {sn, tn}) = min
{
lim
n→∞

sn, lim
n→∞

tn

}
.

Helpful : max {sn, tn} =
sn + tn

2
+
|sn − tn|

2
and min {sn, tn} =

sn + tn
2

− |sn − tn|
2

I.e., the max {a, b} is (the midpt btw a&b) + (half the distance btw a&b).

while the min {a, b} is (the midpt btw a&b) - (half the distance btw a&b).

Ratio Test for Sequences

Thm. Let {xn}n ∈ N be a sequence of
:::::::
strictly

:::::::::
positive real numbers such that 3.2.11
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L := lim
n→∞

xn+1

xn
(Ratio)

exists and
::::::
L < 1. Then the sequence {xn}n∈N converges and lim

n→∞
xn = 0.

Pf. Pf.’s Idea. Find r s.t. L < r < 1. Find N ∈ N s.t. if n ≥ N then
∣∣∣xn+1

xn
− L

∣∣∣ < (r − L).

So if n ≥ N then
xn+1

xn
< r and so 0 < xn+1 < rxn

and so inductively 〈use math induction to prove 〉 we get

0 < xn+1 < r1xn < r1
(
r1xn−1

) i.e.
= r2xn−1 < r3xn−2 < · · · < r(n−N+1)xN

i.e.
= rn

[
r1−NxN

]
:= Crn

for the constant C:=
[
r1−NxN

]
. Note lim

n→∞
rn = 0 since 0 < r < 1. Now apply Squeeze Theorem.
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