A Rigorous Axiomatic Approach to the Real Numbers

	in regorous informatio reproton to the real runsers						
	To do analysis, we need a firm grasp on what the real numbers precisely are.						
Def.	The set of real number numbers, denoted \mathbb{R} , is the unique complete ordered field.	TBB p4					
	First we will define a field as a set which satisfies certain properties (called axioms (recall an axiom						
	is a mathematical statement that is accented without proof.) Then we will axiomically (i.e. give the needed						
	properties) define the adjectives ordered and complete. Finally we deal with uniquess						
1 st	properties) define the adjectives <u>ordered</u> and <u>complete</u> . Finally we deal with uniqueess.						
1	Start off with an arbitrary set F . First we put some structure on F to make it a field.						
	Field Axioms $(F, +, \cdot)$ is a field provided F is a set and the operations (i.e., functions)	TBB $\S1.3$					
	+: $F \times F \to F$ (called the addition operator with + ((a, b)) denoted by $a + b$)	Math546					
	$E \times E \times E = (11,12) + (1$	Math547					
	$\cdot : F \times F \to F$ (called the multiplication operator with $\cdot ((a, b))$ denoted by $a \cdot b$ or ab)						
	satisfy the following 9 field axioms.						
A1.	For any $a, b \in F$, we have $a + b = b + a$. (addition is commutative)						
A2.	For any $a, b, c \in F$ we have $(a + b) + c = a + (b + c)$. (addition is associative)						
A3.	\exists a unique element $0 \in F$ so that $a + 0 = 0 + a = a$ for all $a \in F$. (0 is called the additive identity.)						
A4.	$\forall a \in F$ there is an element in F, denoted $-a$, s.t. $a + (-a) = 0$. $\langle -a \rangle$ is called the additive inverse of $a \rangle$						
M1.	For any $a, b \in F$, we have $ab = ba$.						
M2.	For any $a, b, c \in F$ we have $(ab)c = a(bc)$.						
M3	For any $a, b, c \in I$ we have $(ab)^{c} = a(bc)^{c}$. The aution is associately $a, b, c \in I$ we have $(ab)^{c} = a(bc)^{c}$. The aution is associately $a, c \in I$ we have $(ab)^{c} = a(bc)^{c}$. The aution is associately $a, c \in I$ we have $(ab)^{c} = a(bc)^{c}$.						
M_{Λ}	$\forall a \in F \setminus \{0\}$ there is an elt in F denoted a^{-1} st $aa^{-1} = 1$ $(a^{-1}$ is called the multiplicative inverse of a)						
1.1.1.	$va \in \Gamma \setminus \{0\}$ there is an etc. In Γ , denoted a^{-1} , s.t. $aa^{-1} = \Gamma \setminus \{a^{-1}\}$ is called the multiplicative inverse of a^{-1}						
AM1.	For any $a, b, c \in F$ we have $(a + b) c = ac + bc$. (distributive rule, which connects addition and multiplication)						
2^{nd} .	Now we put an order relation $<$ on the field $(F, +, \cdot)$; thus, creating an <u>ordered field</u> . Recall $<$ is	TBB					
	<u>relation on a set F</u> means that $\forall a, b \in F$ the statement $a < b$ is either true or false (but not both).	Appendix					
	Order Axioms $(F, +, \cdot, <)$ is an ordered field provided $(F, +, \cdot)$ is a field and the below 4 axioms hold.	A4 TDD \$1.4					
01.	For any $a, b \in F$ exactly one of the statements $a = b, a < b$, or $b < a$ is true. (order trichotomy)	100 31.4					
O2.	For any $a, b, c \in F$ if $a < b$ is true and $b < c$ is true, then $a < c$ is true. (transitive/transitivity)						
O3.	For any $a, b, c \in F$ if $a < b$ is true, then $a + c < b + c$ is true.						
O 4.	For any $a, b, c \in F$ if $a < b$ is true and $c > 0$ (0 is the additive identity) then $a \cdot c < b \cdot c$ is true.						
ard	Bounds /Max /Min Working up to the notion of completeness let's talk about bounds						
5.	$\frac{Dounds/Max/Min}{Dounds} = 0$	TBB §1.5					
	<u>Defs.</u> Let $(F, +, \cdot, <)$ be an ordered field and $S \subset F$.	100 31.0					
1.1.	$M \in F$ is an <u>upper bound for S</u> provided if $x \in S$ then $x \leq M$. (Note M need not be in S.)						
1.2.	$M \in F$ is the maximum of S, denoted $M = \max S$, provided M is an upper bound for S and $M \in S$.						
1.3.	S is <u>bounded above</u> provided S has an upper bound in F .						
2.1.	$m \in F$ is a lower bound for S provided if $x \in S$ then $m \le x$. (Note M need not be in S.)						
2.2.	$m \in F$ is the minimum of S, denoted $m = \min S$, provided m is an lower bound for S and $\underline{m \in S}$						
2.3.	S is <u>bounded below</u> provided S has an lower bound in F .						
ο.	S is <u>bounded</u> provided S bounded above and bounded below.						
?.	Here's a question. Does the empty set \emptyset have an upper bound in F ?						
4^{rd} .	supremum (denoted sup) also called least upper bound (denoted lub) Please see next page.	TBB §1.6					
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called complete provided each nonempty						
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called <u>complete</u> provided each nonempty subset S of F that is bounded above has a least upper bound in F						
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called <u>complete</u> provided each nonempty subset S of F that is bounded above has a least upper bound $\inf_{E} F$ (i.e., if $\emptyset \neq S \subset F$ and S is bounded above, then $\sup_{E} S$ exists and $\sup_{E} S \subset F$)						
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called <u>complete</u> provided each nonempty subset S of F that is bounded above has a least upper bound $\inf_{F} F$ (i.e., if $\emptyset \neq S \subset F$ and S is bounded above, then $\sup_{S} S$ exists and $\sup_{S} S \in F$). Eact 1 There exists a complete ordered field. The first published right construction of a						
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called <u>complete</u> provided each nonempty subset S of F that is bounded above has a least upper bound $\inf_{III} F$ (i.e., if $\emptyset \neq S \subset F$ and S is bounded above, then $\sup_{IIII} S$ exists and $\sup_{IIIII} S \in F$). Fact 1 . There exists a complete ordered field. The first published rigorous construction of a complete ordered field was done by Dedekind in 1872. Such a sector in the line of the sector is a sector of the sector.						
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called <u>complete</u> provided each nonempty subset S of F that is bounded above has a least upper bound $\inf_{III} F$ (i.e., if $\emptyset \neq S \subset F$ and S is bounded above, then $\sup_{IIII} S$ exists and $\sup_{IIIII} S \in F$). Fact 1 . There exists a complete ordered field. The first published rigorous construction of a complete ordered field was done by Dedekind in 1872. Such a construction would be covered in a logic class.	770 D					
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called <u>complete</u> provided each nonempty subset S of F that is bounded above has a least upper bound $\inf_{III} F$ (i.e., if $\emptyset \neq S \subset F$ and S is bounded above, then $\sup_{IIII} S$ exists and $\sup_{IIIII} S \in F$). Fact 1 . There exists a complete ordered field. The first published rigorous construction of a complete ordered field was done by Dedekind in 1872. Such a construction would be covered in a logic class. Fact 2 . If $(F_1, +, \cdot, <)$ and $(F_2, \bigoplus, \bigcirc, \bigotimes)$ are two complete ordered fields, then there exists a bijection (i.e., 1 to 1 and onto function) for $F = \sum_{i=1}^{n} \sum_{i=1}$	TBB Exercise					
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called <u>complete</u> provided each nonempty subset S of F that is bounded above has a least upper bound $\inf_{K} F$ (i.e., if $\emptyset \neq S \subset F$ and S is bounded above, then $\sup S$ exists and $\sup S \in F$). Fact 1 . There exists a complete ordered field. The first published rigorous construction of a complete ordered field was done by Dedekind in 1872. Such a construction would be covered in a logic class. Fact 2 . If $(F_1, +, \cdot, <)$ and $(F_2, \oplus, \odot, \bigcirc)$ are two complete ordered fields, then there exists a bijection (i.e., 1-to-1 and onto function) $f: F_1 \to F_2$ s.t. for all $x, y \in F_1$	TBB Exercise 1.11.3					
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called <u>complete</u> provided each nonempty subset S of F that is bounded above has a least upper bound $\inf_{F} F$ (i.e., if $\emptyset \neq S \subset F$ and S is bounded above, then $\sup S$ exists and $\sup S \in F$). Fact 1 . There exists a complete ordered field. The first published rigorous construction of a complete ordered field was done by Dedekind in 1872. Such a construction would be covered in a logic class. Fact 2 . If $(F_1, +, \cdot, <)$ and $(F_2, \oplus, \odot, \bigcirc)$ are two complete ordered fields, then there exists a bijection (i.e., 1-to-1 and onto function) $f: F_1 \to F_2$ s.t. for all $x, y \in F_1$ (a) $f(x + y) = f(x) \oplus f(y)$	TBB Exercise 1.11.3					
	Completeness Axiom An ordered field $(F, +, \cdot, <)$ is called <u>complete</u> provided each nonempty subset S of F that is bounded above has a least upper bound $\inf_{In} F$ (i.e., if $\emptyset \neq S \subset F$ and S is bounded above, then $\sup S$ exists and $\sup S \in F$). Fact 1 . There exists a complete ordered field. The first published rigorous construction of a complete ordered field was done by Dedekind in 1872. Such a construction would be covered in a logic class. Fact 2 . If $(F_1, +, \cdot, <)$ and $(F_2, \oplus, \odot, \bigcirc)$ are two complete ordered fields, then there exists a bijection (i.e., 1-to-1 and onto function) $f: F_1 \to F_2$ s.t. for all $x, y \in F_1$ (a) $f(x + y) = f(x) \oplus f(y)$ (b) $f(x \cdot y) = f(x) \odot f(y)$	TBB Exercise 1.11.3					

This mapping f is an <u>ordered field isomorphism</u> since f is bijection by ordered fields that preserves the field operations (addition&mutiplication) and the order. (Note f tells us that F_1 and F_2 are essentially the same ordered field).

Supremum and Infimum of a Set

Set up

- Let $(F, +, \cdot, <)$ be an ordered field with additive identity 0. (For intuition, think of F being \mathbb{R} .)
- $\widehat{F} := F \cup \{\infty\} \cup \{-\infty\}$ (The symbol := means define to be equal to. $\widehat{\mathbb{R}}$ is the set of extended real numbers.)
- $S \subset F$

Supremum of $S \stackrel{\text{denoted}}{=}_{\text{by}} \sup S$ is also called Least Upper Bound of $S \stackrel{\text{denoted}}{=}_{\text{by}} \operatorname{lub} S$

 $\underline{\text{Def.'s}}.$

- $\sup S := \infty$ for a nonempty set S that is not bounded above
- $\sup \emptyset := -\infty$. (afterall, the set of upper bounds of \emptyset is all of F)
- Let S be a nonempty set that is bounded above. Then $\beta \in F$ is a sup S provided
 - (1) β is an upper bound of S (i.e., $\forall x \in S$, $x \leq \beta$)

(2) if b is an upper bound of \hat{S} , then $\beta \leq b$ (i.e., β is the least of all the upper bounds of S).

<u>Prop.</u> Let S be a nonempty set that is bounded above. Then (2) is equivalent to each of the below.

(2') if $b < \beta$, then b is not an upper bound of S.

(2'') if $b < \beta$, then $\exists x_b \in S$ such that $b < x_b$

 $(2^{''})$ if $\varepsilon \in F$ and $\varepsilon > 0$, then $\exists x_{\varepsilon} \in S$ such that $\beta - \varepsilon < x_{\varepsilon}$

<u>Thm</u>. Let F be a complete ordered field. Let S be a nonempty set that is bounded above. Then the sup S is the unique $\beta \in F$ such that

- (1) β is an upper bound of S (i.e., $\forall x \in S$, $x \leq \beta$) (existence of an upper bound $\inf_{x \in S} F$)
- (2) if b is an upper bound of S, then $\beta \leq b$

 \langle existence of an upper bound $\underset{r}{\text{in } F} \rangle$ \langle uniqueness of the least of the upper bounds \rangle

Summary In a complete ordered field F, the sup $S \in \widehat{F}$ and

- (1) $\sup S \in F$ if and only if S is nonempty and bounded above
- (2) $\sup S = \infty$ if and only if S is nonempty and not bounded above
- (3) $\sup S = -\infty$ if and only if $S = \emptyset$.

Infimum of $S \stackrel{\text{denoted}}{=}_{\text{by}} \inf S$ also called Greatest Lower Bound of $S \stackrel{\text{denoted}}{=}_{\text{by}} \operatorname{glb} S$

 $\underline{\text{Def.'s}}.$

• inf $S := -\infty$ for a nonempty set S that is not bounded below.

• $\inf \emptyset := \infty$. (after all, the set of lower bounds of \emptyset is all of F)

• Let S be a nonempty set that is bounded below. Then $\alpha \in F$ is an inf S provided

(1) α is a lower bound of S (i.e., $\forall x \in S$, $\alpha \leq x$)

(2) if a is a lower bound of S, then $a \le \alpha$ (i.e., α is the greatest of all the lower bounds of S). Prop. Let S be a nonempty set that is bounded below. Then (2) is equivalent to each of the below.

(2') if $\alpha < a$, then a is not a lower bound of S.

(2'') if $\alpha < a$, then $\exists x_a \in S$ such that $x_a < a$

 $(2^{'''})$ if $\varepsilon \in F$ and $\varepsilon > 0$, then $\exists x_{\varepsilon} \in S$ such that $x_{\varepsilon} < \alpha + \varepsilon$

<u>Thm</u>. Let F be a complete ordered field. Let S be a nonempty set that is bounded below. Then the inf S is the unique $\alpha \in F$ such that

(1) α is a lower bound of S (i.e., $\forall x \in S$, $\alpha \leq x$) (existence of an lower bound $\inf_{x \in S} F$) (2) if a is a lower bound of S, then $a \leq \alpha$ (uniqueness of the greatest of the lower bounds)

Summary In a complete ordered field F, the inf $S \in \widehat{F}$ and

- (1) $\inf S \in F$ if and only if S is nonempty and bounded below
- (2) inf $S = -\infty$ if and only if S is nonempty and not bounded below

(3) inf $S = \infty$ if and only if $S = \emptyset$.

Ex 1. Which of the following sets *S* are fields (resp. ordered fields, complete ordered fields) when endowed with the usual addition operation, muliplication operation, and order? Fill in the boxes with YES or NO. No proof needed, just use intuition. If answer NO, give a reason.

$S onumber \downarrow$	English for S	$\begin{array}{c} \text{description} \\ \text{of } S \end{array}$	field	ordered field	complete ordered field
\mathbb{N}	natural numbers	$\{1, 2, 3, 4, \ldots\}$			
\mathbb{Z}	integers	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$			
Q	rational numbers	$\left\{\frac{a}{b} \in \mathbb{R} \colon a \in \mathbb{Z}, b \in \mathbb{N}\right\}$ hint: consider $\left[0, \sqrt{2}\right) \cap \mathbb{Q}$			
\mathbb{R}	real numbers	the unique complete ordered field	Yes. by definition	Yes. by definition	Yes. by definition

Ex 2. Consider the below subsets S of \mathbb{R} . Find the following, when they exist. Just use your intuition. No TBB proofs needed. Use \nexists for does not exists. Columns B and E answers may vary. For intuition, think of: \circ lub S = least upper bound of S = supremum of S = sup S \circ glb S = greatest lower bound of S = infimum of S = inf S.

	order \Rightarrow	D	Е	F	Н	А	В	С	G
	S	Is S bounded below?	some lower bounds of S	$\min S$	$glb S = \\ inf S$	Is S bounded above?	some upper bounds of <i>S</i>	$\max S$	$lub S = \\ sup S$
	recall $S \subset \mathbb{R}$	yes/no	must be in \mathbb{R}	must be in S	$\begin{array}{c} \mathrm{in}\;\widehat{\mathbb{R}}{:=}\\ \mathbb{R}\cup\{\pm\infty\} \end{array}$	yes/no	must be in \mathbb{R}	must be in S	$\begin{array}{l} \mathrm{in}\ \widehat{\mathbb{R}} := \\ \mathbb{R} \cup \{\pm \infty\} \end{array}$
2.1	$\{-3, 2, 5, 7\}$								
2.2	$\left[\begin{array}{c} 0,\sqrt{2} \end{array} ight]$								
2.3	$[\ 0, 17 \)$								
2.4	\mathbb{R}								
2.5	Ø								
2.6	$\left\{x\colon x^3<8\right\}$								
2.7	$\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$								
2.8	$\left\{\frac{1}{x} \colon x \in \mathbb{R}^{>0}\right\}$								
2.9	$\{\cos n\pi\colon n\in\mathbb{N}\}$								
2.10	$\{n\cos n\pi\colon n\in\mathbb{N}\}$								
2.11	N								
2.12	Z								
2.13	Q								