Defs. (M,d) is a metric space provided M is a nonempty set and d is a metric on M.

§13.2

Note, d is a metric on M provided $d: M \times M \to \mathbb{R}$ is a function that satisfies, for each $x, y, z \in M$,

TBB

(M1)
$$d(x,y) \ge 0$$

$$(M3) d(x,y) = d(y,x)$$

(M2)
$$d(x,y) = 0$$
 if and only if $x = y$

(M4)
$$d(x,y) \le d(x,z) + d(z,y)$$
. (triangle inequality)

If d is understood, often we refer to (M, d) by just M.

HMWK: read §13.1-13.3.

Throughout this handout, (M, d) is a metric space (e.g., $M = \mathbb{R}$ with d(x, y) := |x - y|) and

$$S, G, F, K \subset M$$

and

$$x, x_0, y \in M$$

and

$$\varepsilon > 0$$

and def stands for definition while NTN stands for notation.

Neighborhood (NBHD)

§4.2.1

$$N_{\varepsilon}(x_0) \stackrel{\text{NTN}}{=} \varepsilon\text{-NBHD}$$
 centered at x_0

$$\stackrel{\text{def}}{=} \{ y \in M : d(y, x_0) < \varepsilon \}$$

$$N_{\varepsilon}'(x_0) \stackrel{ ext{NTN}}{=}$$
 deleted $\varepsilon\text{-NBHD}$ centered at x_0

In the TB^2 book, if $x \in N_\varepsilon(x_0)$ then $N_\varepsilon(x_0)$ is called a NBHD of x. We will avoid this terminology. In reality, a NBHD of x is any open set containing x.

Neighborhood (NBHD) for $M = \mathbb{R}$ with d(x, y) := |x - y|

$$N_{\varepsilon}(x_0) = \{ y \in \mathbb{R} \colon |x_0 - y| < \varepsilon \} = (x_0 - \varepsilon, x_0 + \varepsilon)$$

$$= (x_0 - \varepsilon, x_0 + \varepsilon)$$

$$N'_{\varepsilon}(x_0) = \{ y \in \mathbb{R} \colon 0 < |x_0 - y| < \varepsilon \} = (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon)$$

DEFINITIONS AND NOTATION

 x_0 is an interior point of S

$$\stackrel{\text{NTN}}{\Longleftrightarrow} \quad x_0 \in S^o$$

$$x_0 \in S^o \stackrel{\text{def}}{\iff} (\exists \varepsilon > 0) [N_{\varepsilon}(x_0) \subset S] \stackrel{\text{NTN}}{\iff} x_0 \in \text{int } (S)$$

$$x_0 \in \operatorname{int}(S)$$
 §4.2.1

$$x_0$$
 is a limit point¹ of S

$$\stackrel{\text{NTN}}{\iff} \quad x_0 \in S' \quad \stackrel{\text{def}}{\iff} \quad (\forall \varepsilon > 0) \ [N'_{\varepsilon}(x_0) \cap S \neq \emptyset]$$

$$\stackrel{\text{i.e.}}{\Longleftrightarrow} \quad (\forall \varepsilon > 0) \ (\exists y \in S) \ [y \in N_{\varepsilon}'(x_0)]$$

 x_0 is an isolated point of S

$$\stackrel{\text{def}}{\iff} [x_0 \in S] \text{ and } [(\exists \varepsilon > 0) [N'_{\varepsilon}(x_0) \cap S = \emptyset]]$$

 $\S 4.2.2$

§4.2.3

 $\S 4.2.4$

 $\S 4.3$

$$\iff$$
 $(\exists \varepsilon > 0) [N_{\varepsilon}(x_0) \cap S = \{x_0\}]$

 $x_0 \in \partial S \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad$ x_0 is a boundary point of S

 $(\forall \varepsilon > 0) [N_{\varepsilon}(x_0) \cap S \neq \emptyset \text{ and } N_{\varepsilon}(x_0) \cap S^C \neq \emptyset]$

the interior of
$$S$$

$$\stackrel{\text{def}}{=}$$
 the set of all interior points of S

 $\S 4.3$

the closure of Sthe boundary of S

$$\stackrel{\text{def}}{=} S \cup S'$$

 $\stackrel{\text{\tiny NTN}}{=} \ \partial S \ \stackrel{\text{\tiny def}}{=} \ \text{the set of all boundary points of } S$

SEQUENTIAL CHARACTERIZATIONS

A sequence $\{x_n\}_{n=1}^{\infty}$ from M converges to x provided $(\forall \varepsilon > 0)$ $(\exists N \in \mathbb{N})$ $(\forall n \in \mathbb{N})$ $[n \ge N \Rightarrow x_n \in N_{\varepsilon}(x_0)]$. $x_0 \in S'$ if and only if there is a sequence $\{s_n\}_{n=1}^{\infty}$ from S such that $\lim_{n \to \infty} s_n = x_0$ and, $\forall n \in \mathbb{N}, s_n \neq x_0$. $x_0 \in \overline{S}$ if and only if there is a sequence $\{s_n\}_{n=1}^{\infty}$ from S such that $\lim_{n \to \infty} s_n = x_0$.

DEFINITION OF OPEN AND CLOSED SET

 $\stackrel{\text{def}}{\iff}$ each point in G is an interior point of $G \stackrel{\text{i.e.}}{\iff} (\forall x \in G) \ (\exists \varepsilon > 0) \ [N_{\varepsilon}(x) \subset G]$ $\stackrel{\mathrm{def}}{\Longleftrightarrow} \ F^C \ \stackrel{\scriptscriptstyle\mathrm{def}}{=} \ M \setminus F \quad \text{is an open set}$

 $\S 4.3.2$

(follow directly from defs.)

PROPOSITIONS

S contains all its limit points $S' \subset S$.

 \circ (isolated point of S) \subset S \subset (isolated point of S) \uplus S'

where \uplus means disjoint union.

 $\circ (\overline{S})' \subset S'$

 \circ S is closed

(and so $(\overline{S})' \subset S' \subset S \cup S' = \overline{S}$ thus \overline{S} is closed)

¹Another word for limit point is accumulation point.

²We will use this def. of closed and not the book's def.!!! The two definitions are equivalent but ours is more widely used. See book's Thm. 4.16 (S is closed $\Leftrightarrow S^C$ is open), Def. 4.9 (S is closed $\Leftrightarrow S' \subset S$), and next fact.

 $\S 4.4$

UNIONS AND INTERSECTION OF OPEN/CLOSED SETS

Thm. Let Γ be an arbitrary indexing set and $n \in \mathbb{N}$.

If $\{G_{\gamma}\}_{{\gamma}\in\Gamma}$ and $\{G_i\}_{i=1}^n$ are collections of $\underbrace{\text{open}}$ subsets of a metric space M, then:

$$\bigcup_{\gamma \in \Gamma} G_{\gamma} \text{ is open} \qquad \text{and} \qquad \bigcap_{i=1}^{n} G_{i} \text{ is open}.$$

If $\{F_{\gamma}\}_{{\gamma}\in\Gamma}$ and $\{F_i\}_{i=1}^n$ are collections of closed subsets of a metric space M, then:

$$\bigcap_{\gamma \in \Gamma} F_{\gamma} \text{ is } \underline{\text{closed}} \qquad \text{and} \qquad \bigcup_{i=1}^{n} F_{i} \text{ is } \underline{\text{closed}}$$

 $\bigcap_{\gamma \in \Gamma} F_{\gamma} \text{ is closed} \qquad \text{and} \qquad \bigcup_{i=1}^{n} F_{i} \text{ is closed}.$ $x \in \bigcup_{\gamma \in \Gamma} G_{\gamma} \iff (\exists \gamma \in \Gamma) \ [x \in G_{\gamma}] \qquad \text{while} \qquad x \in \bigcap_{\gamma \in \Gamma} F_{\gamma} \iff (\forall \gamma \in \Gamma) \ [x \in F_{\gamma}]$

One Theorem for when (M, d) is the \mathbb{R} with d(x, y) := |x - y|.

Thm. A subset G of \mathbb{R} is open if and only if

the set $G = \bigcup_{n=1}^{\infty} (a_n, b_n)$ for some disjoint open (possibly degenerate/empty) intervals $\{(a_n, b_n)\}_{n=1}^{\infty}$.

INTERIOR OF A SUBSET S OF A METRIC SPACE Order to show: 1, 5, 2, 3, 6, 4.

- (1) interior of Sset of interior points of S
- (2) S^o is open
- (3) $S^o \subset S$
- (4) $S^o = S \Leftrightarrow S$ is open
- (5) $S^{o} = \bigcup G \text{ where } \mathcal{G}_{S} = \{G \in \mathcal{P}(M) : G \text{ is open and } G \subset S\}.$
- (6) S^o is the largest open set contained in S (i.e., S^o is the largest open set inside of S) in the sense that S^o is an open set contained in S and (now the largest part) if H is an open set contained in S then $H \subset S^o$.

CLOSURE OF A SUBSET S OF A METRIC SPACE Order to show: 1, 3, 2, 4, 5, 6.

- (1) closure of $S \stackrel{\text{NTN}}{=} \overline{S} \stackrel{\text{def}}{=} S \cup \partial S \stackrel{\text{thm}}{=} S \cup S'$
- (2) \overline{S} is closed
- (3) $S \subset \overline{S}$
- (4) $S = \overline{S} \iff S$ is closed
- (5) $\overline{S} = \bigcap_{F \in \mathcal{F}_S} F$ where $\mathcal{F}_S = \{ F \in \mathcal{P}(M) : F \text{ is closed and } S \subset F \}.$
- (6) \overline{S} is the smallest closed set that contains S (i.e., \overline{S} is the smallest closed set that sits on top of S) i.e., \overline{S} is a closed set that contains S and (now the smallest part) if H is an closed set that contains S then $\overline{S} \subset H$.

COMPACT SUBSETS OF A METRIC SPACE

Defs. A collection

$$\mathcal{C} = \{G_{\gamma}\}_{\gamma \in \Gamma}$$

of subsets of M is an <u>OPEN COVERING</u> of S provided each G_{γ} is open and the G_{γ} 's cover S in the sense that

$$S \subset \bigcup_{\gamma \in \Gamma} G_{\gamma}$$
.

We call $\widetilde{\mathcal{C}}$ a <u>FINITE SUBCOVERING</u> of S (of the covering \mathcal{C}) provided, for some $n \in \mathbb{N}$,

$$\widetilde{\mathcal{C}} = \{G_{\gamma_i}\}_{i=1}^n \subset \mathcal{C}$$
 and $S \subset \bigcup_{i=1}^n G_{\gamma_i}$.

Def. A subset K of M is COMPACT 3 provided each open covering of K has a finite subcovering of K. So:

K is compact \iff \forall open covering $\mathcal C$ of K \exists finite subcovering $\widetilde{\mathcal C}$ of K.

- Lem. Lemmata towards the Heine-Borel Thm.
- **L1.** A compact subset of \mathbb{R} is bounded.
- **L2.** A compact subset of a metric space is closed.
- **L3.** A closed subset of a compact set in a metric space is compact.
- **L4.** A closed and bounded interval of \mathbb{R} is compact.

Rest of Handout
$$(M, d)$$
 is the \mathbb{R} with $d(x, y) := |x - y|$.

HEINE-BOREL THEOREM

Thm. Let $S \subseteq \mathbb{R}$. Each open covering of S has a finite subcovering if and only if S is closed and bounded. I.e.,

a subset S of \mathbb{R} is compact \Leftrightarrow S is closed and bounded .

BW = BOLZANO-WEIERSTRASS

Thm. Recall the (baby) BW Thm. Each bounded sequence from \mathbb{R} contains a convergent subsequence.

Thm2.40 Thm4.21

 $\S 4.5$

Thm. BW Thm.⁴ (sequential form, BWP_{seq})

a subset S of \mathbb{R} is compact \Leftrightarrow each sequence from S has a subseq. that converges to a point in S.

Thm. BW Thm. (set form, BWP_{set})

Cor4.22

a subset S of $\underline{\mathbb{R}}$ is compact \Leftrightarrow each infinite subset of S has at least one limit point that $\underline{\mathrm{is}}\ \underline{\mathrm{in}}\ \underline{S}$.

NESTED SETS

Def. The <u>diameter</u> of a subset E of a metric space (M,d) is $\operatorname{diam} E := \sup \{d(x,y) : x,y \in E\}$.

Thm. Recall the Nested Interval Property. If a sequence $\{[a_n, b_n]\}_{n=1}^{\infty}$ of nonempty closed interval of \mathbb{R} ER2.9. satisfying

and

 $[a_n, b_n] \supset [a_{n+1}, b_{n+1}]$ for each $n \in \mathbb{N}$

 $\lim_{n \to \infty} \operatorname{diam} \left[a_{n+1}, b_{n+1} \right] = 0$

then $\bigcap_{n=1}^{\infty} I_n$ contains precisely one point.

Thm. If a sequence $\{E_n\}_{n=1}^{\infty}$ of nonempty compact subsets of \mathbb{R} satisfies

Thm 4.24

$$E_n \supset E_{n+1}$$
 for each $n \in \mathbb{N}$

then $\bigcap_{n=1}^{\infty} E_n$ is nonempty

Thm. Cantor Intersection Thnm. If a sequence $\{E_n\}_{n=1}^{\infty}$ of compact closed subsets of \mathbb{R} satisfies

Thm4.25

$$E_n \supset E_{n+1}$$
 for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} \operatorname{diam} E_n = 0$

then $\bigcap_{n=1}^{\infty} E_n$ contains precisely one point.

³We will use this def. of compact and not the book's def.!!! Our def. of compact is the correct topological def. and is equivalent to, in the special case that $M = \mathbb{R}$ (with the usual metric), the book's def.'s Def. 4.34.

⁴TBB book calls this theorem the Bolzano-Weierstrass Property (see Thm. 4.21).

For this chart, let the metric space $(M, d) = (\mathbb{R}, d)$ where d is the usual metric on \mathbb{R} , d(x, y) = |x - y|. Fill in the chart. No explanation required. Here, $S \subset \mathbb{R}$ and $a, b \in \mathbb{R}$ with a < b. Recall:

- x_0 is an interior point of $S \iff (\exists \varepsilon > 0) [N_{\varepsilon}(x_0) \subset S]$
- x_0 is a limit point of $S \iff (\forall \varepsilon > 0) [N'_{\varepsilon}(x_0) \cap S \neq \emptyset] \iff (\forall \varepsilon > 0) (\exists y \in S) [y \in N'_{\varepsilon}(x_0)].$
- $\bullet \ \overline{S} \quad \stackrel{\text{def}}{=} \ S \cup S' \ .$
- $x_0 \in S' \Leftrightarrow \text{there is a sequence } \{s_n\}_{n=1}^{\infty} \text{ from } S \text{ such that } \lim_{n \to \infty} s_n = x_0 \text{ and, } \forall n \in \mathbb{N}, s_n \neq x_0.$
- $x_0 \in \overline{S} \iff$ there is a sequence $\{s_n\}_{n=1}^{\infty}$ from S such that $\lim_{n \to \infty} s_n = x_0$.

S	interior of S	limit points of S	closure of S	Is S open? yes/no	Is S closed? yes/no
	S ^o	S'	\overline{S}	yes/no	yes/no
(a,b]	(a,b)	[a,b]	[a,b]	no	no
(a,b)	(a,b)	[a,b]	[a,b]	yes	no
[a,b]	(a,b)	[a,b]	[a,b]	no	yes
(a,∞)	(a,∞)	$[a,\infty)$	$[a,\infty)$	yes	no
$ \left (0,1) \cup \{17\} \right $	(0,1)	[0,1]	$[0,1] \cup \{17\}$	no	no
$\left\{\frac{1}{n} \colon n \in \mathbb{N}\right\}$	Ø	{0}	$\{0\} \cup \left\{\frac{1}{n} \colon n \in \mathbb{N}\right\}$	no	no
\mathbb{Q}	Ø	\mathbb{R}	\mathbb{R}	no	no
	~				-
$[0,1]\cap \mathbb{Q}$	Ø	[0,1]	[0 1]	no	no l
[0,1]114	Ψ	[0, 1]	[0,1]	no	no
_	_	_	_		
\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	yes	yes
Ø	Ø	Ø	Ø	yes	yes