Defs. (M, d) is a metric space provided M is a nonempty set and d is a metric on M . Note, d is a metric on M provided $d: M \times M \to \mathbb{R}$ is a function that satisfies, for each $x, y, z \in M$,	TBB §13.2
$ \begin{array}{ll} (\mathrm{M1}) \ d\left(x,y\right) \geq 0 & (\mathrm{M3}) \ d\left(x,y\right) = d\left(y,x\right) & (\mathrm{symmetry}) \\ (\mathrm{M2}) \ d\left(x,y\right) = 0 \ \mathrm{if} \ \mathrm{and} \ \mathrm{only} \ \mathrm{if} \ x = y & (\mathrm{M4}) \ d\left(x,y\right) \leq d\left(x,z\right) + d\left(z,y\right). \ (\mathrm{triangle inequal}) \\ \end{array} $,
If d is understood, often we refer to (M, d) by just M. HMWK: read §13.1–13.3.	
▶. Throughout this handout, (M, d) is a metric space (e.g., $M = \mathbb{R}$ with $d(x, y) := x - y $) and	
$S, G, F, K \subset M$ and $x, x_0, y \in M$ and $\varepsilon > 0$	
and def stands for definition while NTN stands for notation.	
Neighborhood (NBHD)	$\S4.2.1$
$N_{\varepsilon}(x_{0}) \stackrel{\text{NTN}}{=} \varepsilon \text{-NBHD centered at } x_{0} \stackrel{\text{def}}{=} \{y \in M : d(y, x_{0}) < \varepsilon\}$ $N_{\varepsilon}'(x_{0}) \stackrel{\text{NTN}}{=} \text{ deleted } \varepsilon \text{-NBHD centered at } x_{0} \stackrel{\text{def}}{=} \{y \in M : 0 < d(y, x_{0}) < \varepsilon\} = N_{\varepsilon}(x_{0}) \setminus \{x_{0}\}$	
In the TB ² book, if $x \in N_{\varepsilon}(x_0)$ then $N_{\varepsilon}(x_0)$ is called a NBHD of x . We will avoid this terminology. In reality, a NBHD of x is any open set contain	ing x.
$Neighborhood (NBHD) \text{ for } M = \mathbb{R} \text{ with } d(x, y) := x - y $ $N_{\varepsilon}(x_0) = \{y \in \mathbb{R} : x_0 - y < \varepsilon\} = (x_0 - \varepsilon, x_0 + \varepsilon)$	
$N_{\varepsilon}(x_0) = \{y \in \mathbb{R} : x_0 - y < \varepsilon\} = (x_0 - \varepsilon, x_0 + \varepsilon)$ $N_{\varepsilon}'(x_0) = \{y \in \mathbb{R} : 0 < x_0 - y < \varepsilon\} = (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon)$	
DEFINITIONS AND NOTATION	
x_0 is an <u>interior point</u> of S $\stackrel{\text{NTN}}{\iff}$ $x_0 \in S^o$ $\stackrel{\text{def}}{\iff}$ $(\exists \varepsilon > 0) [N_{\varepsilon}(x_0) \subset S]$ $\stackrel{\text{NTN}}{\underset{\text{book}}{\longleftarrow}}$ $x_0 \in \text{int} (S)$	§4.2.1
$x_0 ext{ is a limit point}^1 ext{ of } S \qquad \stackrel{\text{NTN}}{\longleftrightarrow} x_0 \in S' \stackrel{\text{def}}{\Longleftrightarrow} (\forall \varepsilon > 0) \ [N'_{\varepsilon}(x_0) \cap S \neq \emptyset]$	§4.2.3
$\stackrel{\text{i.e.}}{\longleftrightarrow} (\forall \varepsilon > 0) \ (\exists y \in S) \ [y \in N'_{\varepsilon}(x_0)]$	
$x_0 \text{ is an } \underline{\text{isolated point}} \text{ of } S \stackrel{\text{NTN}}{\longleftrightarrow} \text{none} \stackrel{\text{def}}{\longleftrightarrow} [x_0 \in S] \text{ and } [(\exists \varepsilon > 0) [N'_{\varepsilon}(x_0) \cap S = \emptyset]]$	§4.2.2
$ \begin{array}{ll} \longleftrightarrow & (\exists \varepsilon > 0) \ [N_{\varepsilon}(x_0) \cap S \ = \ \{x_0\} \] \\ x_0 \text{ is a boundary point of } S & \stackrel{\text{NTN}}{\longleftrightarrow} & x_0 \in \partial S & \stackrel{\text{def}}{\Longleftrightarrow} & (\forall \varepsilon > 0) \ [N_{\varepsilon}(x_0) \cap S \neq \emptyset \text{ and } N_{\varepsilon}(x_0) \cap S^C \neq \emptyset \end{array} $	∠Ø] §4.2.4
the <u>interior</u> of $S \stackrel{\text{NTN}}{=} S^o \stackrel{\text{def}}{=}$ the set of all interior points of S	ے §4.3
the <u>closure</u> of $S \stackrel{\text{NTN}}{=} \overline{S} \stackrel{\text{def}}{=} S \cup S'$	§4.3
the boundary of $S \stackrel{\text{NTN}}{=} \partial S \stackrel{\text{def}}{=}$ the set of all boundary points of S	
SEQUENTIAL CHARACTERIZATIONS	
A sequence $\{x_n\}_{n=1}^{\infty}$ from M converges to x provided $(\forall \varepsilon > 0)$ $(\exists N \in \mathbb{N})$ $(\forall n \in \mathbb{N})$ $[n \ge N \Rightarrow x_n \in N_{\varepsilon}(x_0 \in S' \text{ if and only if there is a sequence } \{s_n\}_{n=1}^{\infty}$ from S such that $\lim_{n \to \infty} s_n = x_0$ and, $\forall n \in \mathbb{N}, s_n \neq x_0$	$x_0)].$ $x_0.$
$x_0 \in \overline{S}$ if and only if there is a sequence $\{s_n\}_{n=1}^{\infty}$ from S such that $\lim_{n \to \infty} s_n = x_0$.	
DEFINITION OF OPEN AND CLOSED SET	
$G \text{ is open} \stackrel{\text{def}}{\longleftrightarrow} \text{ each point in } G \text{ is an interior point of } G \stackrel{\text{i.e.}}{\longleftrightarrow} (\forall x \in G) \ (\exists \varepsilon > 0) \ [N_{\varepsilon}(x) \subset G]$	$\S4.3.2$
$F \text{ is } \overline{\text{closed}}^2 \iff F^C \stackrel{\text{def}}{=} M \setminus F$ is an open set	
PROPOSITIONS (follow directly from or set)	lefs.)
$\circ S$ is closed $\stackrel{\text{thm}}{\iff} S$ contains all its limit points $\stackrel{\text{i.e.}}{\iff} S' \subset S$.	
◦ (isolated point of S) ⊂ S ⊂ (isolated point of S) $⊎$ S' where $⊎$ means disjoint un	
$\circ \ \left(\overline{S}\right)' \subset S' \qquad (\text{and so } \left(\overline{S}\right)' \subset S \cup S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline{S} \text{ is clearly } S' = \overline{S} \text{ thus } \overline$	used)
1 Another word for limit reint is accumulation point	

¹Another word for limit point is accumulation point.

²We will use this def. of closed and not the book's def.!!! The two definitions are equivalent but ours is more widely used. See book's Thm. 4.16 (S is closed $\Leftrightarrow S^C$ is open), Def. 4.9 (S is closed $\Leftrightarrow S' \subset S$), and next fact.

 $\S{4.4}$

UNIONS AND INTERSECTION OF OPEN/CLOSED SETS

Thm. Let Γ be an arbitrary indexing set and $n \in \mathbb{N}$.

•. If $\{G_{\gamma}\}_{\gamma \in \Gamma}$ and $\{G_i\}_{i=1}^n$ are collections of <u>open</u> subsets of a metric space M, then:

$$\bigcup_{\gamma \in \Gamma} G_{\gamma} \text{ is open} \qquad \text{and} \qquad \bigcap_{i=1}^{n} G_{i} \text{ is open}.$$

•. If $\{F_{\gamma}\}_{\gamma \in \Gamma}$ and $\{F_i\}_{i=1}^n$ are collections of closed subsets of a metric space M, then:

$$\bigcap_{\gamma \in \Gamma} F_{\gamma} \text{ is closed} \quad \text{and} \quad \bigcup_{i=1} F_{i} \text{ is closed}.$$
Recall. $x \in \bigcup_{\gamma \in \Gamma} G_{\gamma} \stackrel{\text{def}}{\iff} (\exists \gamma \in \Gamma) [x \in G_{\gamma}] \quad \text{while} \quad x \in \bigcap_{\gamma \in \Gamma} F_{\gamma} \stackrel{\text{def}}{\iff} (\forall \gamma \in \Gamma) [x \in F_{\gamma}]$

One Theorem for when (M, d) is the \mathbb{R} with d(x, y) := |x - y|.

Thm. A subset G of \mathbb{R} is open if and only if

the set $G = \bigcup_{n=1}^{\infty} (a_n, b_n)$ for some disjoint open (possibly degenerate/empty) intervals $\{(a_n, b_n)\}_{n=1}^{\infty}$.

```
INTERIOR OF A SUBSET {\cal S} of a metric space
```

Order to show: 1, 5, 2, 3, 6, 4.

- (1) interior of $S \stackrel{\text{NTN}}{=} S^o \stackrel{\text{def}}{=}$ set of interior points of S
- (2) S^o is open
- $(3) \ S^o \subset S$
- (4) $S^o = S \iff S$ is open
- (5) $S^{o} = \bigcup_{G \in \mathcal{G}_{S}} G$ where $\mathcal{G}_{S} = \{G \in \mathcal{P}(M) : G \text{ is open and } G \subset S\}.$
- (6) S^o is the largest open set contained in S (i.e., S^o is the largest open set *inside of* S) in the sense that S^o is an open set contained in S and (now the largest part) if H is an open set contained in S then $H \subset S^o$.

CLOSURE OF A SUBSET S OF A METRIC SPACE Order to show: 1, 3, 2, 4, 5, 6.

- (1) closure of $S \stackrel{\text{NTN}}{=} \overline{S} \stackrel{\text{def}}{=} S \cup \partial S \stackrel{\text{thm}}{=} S \cup S'$
- (2) \overline{S} is closed
- $(3) \ S \subset \overline{S}$
- (4) $S = \overline{S} \iff S$ is closed
- (5) $\overline{S} = \bigcap_{F \in \mathcal{F}_S} F$ where $\mathcal{F}_S = \{F \in \mathcal{P}(M) : F \text{ is closed and } S \subset F\}.$
- (6) \overline{S} is the smallest closed set that contains S (i.e., \overline{S} is the smallest closed set that sits on top of S) i.e., \overline{S} is a closed set that contains S and (now the smallest part) if H is an closed set that contains S then $\overline{S} \subset H$.

 $\S4.5$

COMPACT SUBSETS OF A METRIC SPACE

Defs. A collection

$$\mathcal{C} = \{G_{\gamma}\}_{\gamma \in \Gamma}$$

of subsets of M is an <u>OPEN COVERING</u> of S provided each G_{γ} is open and the G_{γ} 's cover S in the sense that

$$S \subset \bigcup_{\gamma \in \Gamma} G_{\gamma}$$
.

We call $\widetilde{\mathcal{C}}$ a <u>FINITE SUBCOVERING</u> of S (of the covering \mathcal{C}) provided, for some $n \in \mathbb{N}$,

$$\widetilde{\mathcal{C}} = \{G_{\gamma_i}\}_{i=1}^n \subset \mathcal{C}$$
 and $S \subset \bigcup_{i=1}^n G_{\gamma_i}.$

Def. A subset K of M is <u>COMPACT</u>³ provided each open covering of K has a finite subcovering of K. So:

K is compact $\iff \forall$ open covering \mathcal{C} of $K \exists$ finite subcovering $\widetilde{\mathcal{C}}$ of K.

Lem. Lemmata towards the Heine-Borel Thm.

- **L1.** A compact subset of \mathbb{R} is bounded.
- **L2.** A compact subset of a metric space is closed.
- L3. A closed subset of a compact set in a metric space is compact.
- **L4.** A closed and bounded interval of \mathbb{R} is compact.

Rest of Handout (M, d) is the \mathbb{R} with $d(x, y) := x - y $.	
HEINE-BOREL THEOREM	

Thm. Let $S \subset \mathbb{R}$. Each open covering of S has a finite subcovering if and only if S is closed and bounded. I.e., a subset S of \mathbb{R} is compact \Leftrightarrow S is closed and bounded.

BW = BOLZANO-WEIERSTRASS

Thm. Recall the (baby) BW Thm.Each bounded sequence from \mathbb{R} contains a convergent subsequence.Thm2.40**Thm.** BW Thm.⁴ (sequential form, BWP_{seq})Thm4.21

a subset S of \mathbb{R} is compact \Leftrightarrow each sequence from S has a subseq. that converges to a point in S.

Thm. BW Thm. (set form, BWP_{set}) a subset S of \mathbb{R} is compact \Leftrightarrow each infinite subset of S has at least one limit point that is in S.

Def. The <u>diameter</u> of a subset E of a metric space (M, d) is diam $E := \sup \{d(x, y) : x, y \in E\}$.

Thm. Recall the Nested Interval Property. If a sequence $\{[a_n, b_n]\}_{n=1}^{\infty}$ of nonempty closed interval of \mathbb{R} ER2.9.6 satisfying

$$[a_n, b_n] \supset [a_{n+1}, b_{n+1}]$$
 for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} \text{diam} [a_{n+1}, b_{n+1}] = 0$

then $\bigcap_{n=1}^{\infty} I_n$ contains precisely one point.

Thm. If a sequence $\{E_n\}_{n=1}^{\infty}$ of nonempty compact subsets of \mathbb{R} satisfies

$$E_n \supset E_{n+1}$$
 for each $n \in \mathbb{N}$

then $\bigcap_{n=1}^{\infty} E_n$ is nonempty

Thm. Cantor Intersection Thnm. If a sequence $\{E_n\}_{n=1}^{\infty}$ of compact closed subsets of \mathbb{R} satisfies

$$E_n \supset E_{n+1}$$
 for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} \operatorname{diam} E_n = 0$

then $\bigcap_{n=1}^{\infty} E_n$ contains precisely one point.

Thm 4.25

Thm4.24

Cor4.22

³We will use this def. of compact and not the book's def.!!! Our def. of compact is the correct topological def. and is equivalent to, in the special case that $M = \mathbb{R}$ (with the usual metric), the book's def.'s Def. 4.34.

⁴TBB book calls this theorem the Bolzano-Weierstrass Property (see Thm. 4.21).

For this chart, let the metric space $(M, d) = (\mathbb{R}, d)$ where d is the usual metric on \mathbb{R} , d(x, y) = |x - y|. Fill in the chart. No explanation required. Here, $S \subset \mathbb{R}$ and $a, b \in \mathbb{R}$ with a < b. Recall:

- x_0 is an interior point of $S \stackrel{\text{def}}{\iff} (\exists \varepsilon > 0) [N_{\varepsilon}(x_0) \subset S]$
- x_0 is a limit point of $S \iff (\forall \varepsilon > 0) [N'_{\varepsilon}(x_0) \cap S \neq \emptyset] \iff^{\text{i.e.}} (\forall \varepsilon > 0) (\exists y \in S) [y \in N'_{\varepsilon}(x_0)].$
- $\overline{S} \stackrel{\text{def}}{=} S \cup S'$.
- $x_0 \in S' \Leftrightarrow$ there is a sequence $\{s_n\}_{n=1}^{\infty}$ from S such that $\lim_{n \to \infty} s_n = x_0$ and, $\forall n \in \mathbb{N}, s_n \neq x_0$.
- $x_0 \in \overline{S} \iff$ there is a sequence $\{s_n\}_{n=1}^{\infty}$ from S such that $\lim_{n \to \infty} s_n = x_0$.

S	interior of S S^o	limit points of S S'	closure of S \overline{S}	Is S open? yes/no	Is S closed? yes/no
(<i>a</i> , <i>b</i>]					
(<i>a</i> , <i>b</i>)					
[a,b]					
(a,∞)					
$(0,1) \cup \{17\}$					
$\left\{\frac{1}{n} \colon n \in \mathbb{N}\right\}$					
Q					
$[0,1] \cap \mathbb{Q}$					
Ø					