
TBB §13.1-13.3 and 4.1–4.4 Introduction to Topology

Defs. (M,d) is a metric space provided M is a nonempty set and d is a metric on M. TBB

§13.2Note, d is a metric on M provided d : M ×M → R is a function that satisfies, for each x, y, z ∈M ,

(M1) d (x, y) ≥ 0

(M2) d (x, y) = 0 if and only if x = y

(M3) d (x, y) = d (y, x) (symmetric)

(M4) d (x, y) ≤ d (x, z) + d (z, y). (triangle inequality)

If d is understood, often we refer to (M,d) by just M .
::::::
HMWK: read §13.1–13.3.

I. Throughout this handout, (M,d) is a metric space (e.g., M = R with d (x, y) := |x− y|) and

S,G, F,K ⊂M and x, x0, y ∈M and ε > 0

and def stands for definition while NTN stands for notation.

Neighborhood (NBHD) §4.2.1

Nε(x0)
NTN
= ε-NBHD centered at x0

def
= {y ∈M : d (y, x0) < ε}

N ′
ε(x0)

NTN
= deleted ε-NBHD centered at x0

def
= {y ∈M : 0 < d (y, x0) < ε} = Nε(x0) \ {x0}

In the TB2 book, if x ∈ Nε(x0) then Nε(x0) is called a NBHD of x. We will avoid this terminology. In reality, a NBHD of x is any open set containing x.

Neighborhood (NBHD) for M = R with d (x, y) := |x− y|

Nε(x0) = {y ∈ R : |x0 − y| < ε} = (x0 − ε, x0 + ε)

N ′
ε(x0) = {y ∈ R : 0 < |x0 − y| < ε} = (x0 − ε, x0) ∪ (x0, x0 + ε)

definitions and notation

x0 is an interior point of S
NTN⇐⇒ x0 ∈ So

def⇐⇒ (∃ε > 0) [Nε(x0) ⊂ S ]
NTN⇐⇒
book

x0 ∈ int (S) §4.2.1

x0 is a limit point1 of S
NTN⇐⇒ x0 ∈ S′ def⇐⇒ (∀ε > 0) [N ′

ε(x0) ∩ S 6= ∅ ] §4.2.3
i.e.⇐⇒ (∀ε > 0) (∃y ∈ S) [y ∈ N ′

ε(x0)]

x0 is an isolated point of S
NTN⇐⇒ none

def⇐⇒ [x0 ∈ S ] and [ (∃ε > 0) [N ′
ε(x0) ∩ S = ∅ ] ] §4.2.2

⇐⇒ (∃ε > 0) [Nε(x0) ∩ S = {x0} ]

x0 is a boundary point of S
NTN⇐⇒ x0 ∈ ∂S

def⇐⇒ (∀ε > 0)
[
Nε(x0) ∩ S 6= ∅ andNε(x0) ∩ SC 6= ∅

]
§4.2.4

the interior of S
NTN
= So

def
= the set of all interior points of S §4.3

the closure of S
NTN
= S

def
= S ∪ S′ §4.3

the boundary of S
NTN
= ∂S

def
= the set of all boundary points of S

sequential characterizations

A sequence {xn}∞n=1 fromM converges to x provided (∀ε > 0) (∃N ∈ N) (∀n ∈ N) [n ≥ N ⇒ xn ∈ Nε(x0)].

x0 ∈ S′ if and only if there is a sequence {sn}∞n=1 from S such that lim
n→∞

sn = x0 and, ∀n ∈ N, sn 6= x0.

x0 ∈ S if and only if there is a sequence {sn}∞n=1 from S such that lim
n→∞

sn = x0.

definition of open and closed set

G is open
def⇐⇒ each point in G is an interior point of G

i.e.⇐⇒ (∀x ∈ G) (∃ε > 0) [Nε(x) ⊂ G ] §4.3.2

F is closed2 def⇐⇒ FC
def
= M \ F is an open set

propositions (follow directly from defs.)

◦ S is closed
thm⇐⇒ S contains all its limit points

i.e.⇐⇒ S′ ⊂ S.

◦ (isolated point of S) ⊂ S ⊂ (isolated point of S) ] S′ where ] means
:::::::
disjoint union.

◦
(
S
)′ ⊂ S′ (and so

(
S
)′ ⊂ S′ ⊂ S ∪ S′ = S thus S is closed)

1Another word for limit point is accumulation point.
2We will use this def. of closed and not the book’s def.!!! The two definitions are equivalent but ours is more widely used.

See book’s Thm. 4.16 (S is closed ⇔ SC is open), Def. 4.9 (S is closed ⇔ S′ ⊂ S), and next fact.
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unions and intersection of open/closed sets
§4.4

Thm. Let Γ be an arbitrary indexing set and n ∈ N.

◦. If {Gγ}γ∈Γ and {Gi}ni=1 are collections of
:::::
open subsets of a metric space M , then:⋃

γ∈Γ

Gγ is
::::
open and

n⋂
i=1

Gi is
::::
open.

◦. If {Fγ}γ∈Γ and {Fi}ni=1 are collections of
:::::
closed subsets of a metric space M , then:⋂

γ∈Γ

Fγ is
:::::
closed and

n⋃
i=1

Fi is
:::::
closed.

Recall. x ∈
⋃
γ∈Γ

Gγ
def⇐⇒ (∃γ ∈ Γ) [x ∈ Gγ ] while x ∈

⋂
γ∈Γ

Fγ
def⇐⇒ (∀γ ∈ Γ) [x ∈ Fγ ]

One Theorem for when (M,d) is the R with d (x, y) := |x− y|.

Thm. A subset G of
::
R is open if and only if

the set G =
∞⋃
n=1

(an, bn) for some disjoint open (possibly degenerate/empty) intervals { (an, bn) }∞n=1.

interior of a subset S of a metric space Order to show: 1, 5, 2, 3, 6, 4.

(1) interior of S
NTN
= So

def
= set of interior points of S

(2) So is open

(3) So ⊂ S

(4) So = S ⇔ S is open

(5) So =
⋃
G∈GS

G where GS = {G ∈ P (M) : G is open and G ⊂ S}.

(6) So is the largest open set contained in S (i.e., So is the largest open set inside of S) in the sense that

So is an open set contained in S and 〈now the largest part 〉 if H is an open set contained in S then H ⊂ So.

closure of a subset S of a metric space Order to show: 1, 3, 2, 4, 5, 6.

(1) closure of S
NTN
= S

def
= S ∪ ∂S thm

= S ∪ S′

(2) S is closed

(3) S ⊂ S

(4) S = S ⇔ S is closed

(5) S =
⋂

F∈FS

F where FS = {F ∈ P (M) : F is closed and S ⊂ F}.

(6) S is the smallest closed set that contains S (i.e., S is the smallest closed set that sits on top of S) i.e.,

S is a closed set that contains S and 〈now the smallest part 〉 if H is an closed set that contains S then S ⊂ H.
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compact subsets of a metric space §4.5

Defs. A collection

C = {Gγ}γ∈Γ

of subsets of M is an open covering of S provided each Gγ is open and the Gγ ’s cover S in the sense that

S ⊂
⋃
γ∈Γ

Gγ .

We call C̃ a finite subcovering of S (of the covering C) provided, for some n ∈ N,

C̃ = {Gγi}
n
i=1 ⊂ C and S ⊂

n⋃
i=1

Gγi .

Def. A subset K of M is compact 3 provided each open covering of K has a finite subcovering of K. So:

K is compact ⇐⇒ ∀ open covering C of K ∃ finite subcovering C̃ of K .

Lem. Lemmata towards the Heine-Borel Thm.

L1. A compact subset of R is bounded.

L2. A compact subset of a metric space is closed.

L3. A closed subset of a compact set in a metric space is compact.

L4. A closed and bounded interval of R is compact.

Rest of Handout (M,d) is the R with d (x, y) := |x− y|.
heine-borel theorem

Thm.
:::
Let

:::::::
S ⊂ R. Each open covering of S has a finite subcovering if and only if S is closed and bounded. I.e.,

a subset S of
::
R is compact ⇔ S is closed and bounded .

bw = bolzano-weierstrass

Thm. Recall the (baby) BW Thm. Each bounded sequence from R contains a convergent subsequence. Thm2.40

Thm. BW Thm.4 (sequential form, BWPseq) Thm4.21

a subset S of
::
R is compact ⇔ each sequence from S has a subseq. that converges

::
to

::
a

:::::
point

:::
in

::
S.

Thm. BW Thm. (set form, BWPset) Cor4.22

a subset S of
::
R is compact ⇔ each infinite subset of S has at least one limit point that

:
is
:::
in

::
S .

nested sets

Def. The diameter of a subset E of a metric space (M,d) is diamE := sup {d (x, y) : x, y ∈ E}.
Thm. Recall the Nested Interval Property. If a sequence { [an, bn] }∞n=1 of nonempty closed interval of R ER2.9.6

satisfying

[an, bn] ⊃ [an+1, bn+1] for each n ∈ N and lim
n→∞

diam [an+1, bn+1] = 0

then ∩∞n=1In contains precisely one point.

Thm. If a sequence {En}∞n=1 of nonempty compact subsets of
:
R satisfies Thm4.24

En ⊃ En+1 for each n ∈ N

then ∩∞n=1En is nonempty

Thm. Cantor Intersection Thnm. If a sequence {En}∞n=1 of compact closed subsets of
:
R satisfies Thm4.25

En ⊃ En+1 for each n ∈ N and lim
n→∞

diamEn = 0

then ∩∞n=1En contains precisely one point.

3We will use this def. of compact and not the book’s def.!!! Our def. of compact is the correct topological def. and is
equivalent to, in the special case that M = R (with the usual metric), the book’s def.’s Def. 4.34.

4TBB book calls this theorem the Bolzano-Weierstrass Property (see Thm. 4.21).
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For this chart, let the metric space (M,d) = (R, d) where d is the usual metric on R, d (x, y) = |x− y|.
Fill in the chart. No explanation required. Here, S ⊂ R and a, b ∈ R with a < b. Recall:

• x0 is an interior point of S
def⇐⇒ (∃ε > 0) [Nε(x0) ⊂ S ]

• x0 is a limit point of S
def⇐⇒ (∀ε > 0) [N ′

ε(x0) ∩ S 6= ∅ ]
i.e.⇐⇒(∀ε > 0) (∃y ∈ S) [y ∈ N ′

ε(x0)].

• S def
= S ∪ S′ .

• x0 ∈ S′ ⇔ there is a sequence {sn}∞n=1 from S such that lim
n→∞

sn = x0 and, ∀n ∈ N, sn 6= x0.

• x0 ∈ S ⇔ there is a sequence {sn}∞n=1 from S such that lim
n→∞

sn = x0.

S interior of S
So

limit points of S
S′

closure of S
S

Is S open?
yes/no

Is S closed?
yes/no

(a, b]

(a, b)

[a, b]

(a,∞)

(0, 1) ∪ {17}

{
1
n : n ∈ N

}

Q

[0, 1] ∩Q

R

∅
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