－Set up for this entire handout．Let $f: X \rightarrow Y$ be a function from a set X to a set Y ． Let $x \in X$ and $y \in Y$ ．Let $A \subseteq X$ and $B \subseteq Y$ ．Pictorially have $f: X \xrightarrow{\rightarrow}$ ．
$A \quad B$ ．
Defs．The function f is injective（or one－to－one）provided if $x_{1}, x_{2} \in X$ and $x_{1} \neq x_{2}$ ，then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ ． $\left\langle\right.$ So f is 1 －to－ $1 \Leftrightarrow\left[\right.$ if $x_{1}, x_{2} \in X$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ ，then $x_{1}=x_{2}$ ．］〉
The function f is surjective（or onto）provided if $y \in Y$ then there is $x \in X$ such that $f(x)=y$ ．
The function f is bijective provided f is injective and surjective．
〈The function $f: X \rightarrow Y$ has and inverse function $f^{-1}: Y \rightarrow X$ if and only if f is bijective．）
The image（or direct image）of A under f ，denoted by $f[A]$ ，is the set

$$
f[A] \stackrel{\text { def }}{=}\{f(x) \in Y: x \in A\} \stackrel{\text { note }}{=}\{y \in Y: f(x)=y \text { for some } x \in A\} \stackrel{\text { note }}{\subseteq} Y .
$$

The inverse image（or preimage）of B under f ，denoted by $f^{-1}[B]$ ，is the set

$$
f^{-1}[B] \stackrel{\text { def }}{=}\{x \in X: f(x) \in B\} \stackrel{\text { note }}{=}\{x \in X: f(x)=y \text { for some } y \in B\} \stackrel{\text { note }}{\subseteq} X .
$$

Rmk．

$$
\begin{array}{ll}
y \in f[A] & \underset{\text { of image }}{\text { by def. }}
\end{array} y=f(a) \text { for some } a \in A \quad \stackrel{\text { note }}{\Longrightarrow} \quad(\exists a \in A)[f(a)=y]
$$

Be careful though：

$$
\begin{array}{cll}
x \in A & \Rightarrow & f(x) \in f(A) \\
f(x) \in f(A) & \nRightarrow & x \in A . \tag{W}
\end{array}
$$

Proposition．Let $A_{1}, A_{2}, A_{i} \subseteq X$ and $B_{1}, B_{2}, B_{i} \subseteq Y$ for each i in an indexing set I ．Then

$$
\begin{array}{lll}
x \in \bigcup_{i \in I} A_{i} & \underset{\text { of union }}{\text { by def }} & x \in A_{i} \text { for some } i \in I \\
x \in \bigcap_{i \in I} A_{i} & \stackrel{\text { of intersection }}{\text { by def }} & \\
\hdashline \text { note } & (\exists i \in I)\left[x \in A_{i} \text { for each } i \in I\right. & \stackrel{\text { note }}{\Longleftrightarrow} \\
(\forall i \in I)\left[x \in A_{i}\right]
\end{array}
$$

and

$$
\begin{array}{lll}
A_{1} \subseteq A_{2} & \Rightarrow & f\left[A_{1}\right] \subseteq f\left[A_{2}\right] \\
B_{1} \subseteq B_{2} & \Rightarrow & f^{-1}\left[B_{1}\right] \subseteq f^{-1}\left[B_{2}\right] \tag{2}
\end{array}
$$

and

$$
\begin{align*}
A & \subseteq f^{-1}[f[A]] \tag{3}\\
f\left[f^{-1}[B]\right] & \subseteq B \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
& f\left[\cup_{i \in I} A_{i}\right]=\cup_{i \in I} f\left[A_{i}\right] \tag{5}\\
& f\left[\cap_{i \in I} A_{i}\right] \subseteq \cap_{i \in I} f\left[A_{i}\right] \tag{6}\\
& f[X \backslash A] \quad \supseteq \quad f[X] \backslash f[A] \tag{7}\\
& f^{-1}\left[\begin{array}{ll}
\cup_{i \in I} & B_{i}
\end{array}\right]=\cup_{i \in I} f^{-1}\left[B_{i}\right] \tag{8}\\
& f^{-1}\left[\cap_{i \in I} B_{i}\right]=\cap_{i \in I} f^{-1}\left[B_{i}\right] . \tag{9}\\
& f^{-1}[Y \backslash B]=X \backslash f^{-1}[B] \quad \text { 〈i.e. } f^{-1}\left[B^{C}\right]=\left(f^{-1}[B]^{C}\right) \text { 〉. } \tag{10}
\end{align*}
$$

Remarks：
－If f is injective（i．e．， 1 －to－1），then equality holds in（3）\＆（7）and the implication in（W）holds．
－If f is surjective（i．e．，onto），then set equality holds in（4）．
－To help remember（6），think about what can happen when $\cap_{i \in I} A_{i}=\emptyset$ ．

