
are not empty. (Why?) If the set Ax is bounded below, we set ax :¼ inf Ax; if Ax is not

bounded below, we set ax :¼ �1. Note that in either case ax =2 G. If the set Bx is bounded

above, we set bx :¼ sup Bx; if Bx is not bounded above, we set bx :¼ 1. Note that in either

case bx =2 G.

We now define Ix :¼ ax; bxð Þ; clearly Ix is an open interval containing x. We claim

that Ix � G. To see this, let y 2 Ix and suppose that y< x. It follows from the definition of

ax that there exists a0 2 Ax with a0 < y, whence y 2 a0; xð � � G. Similarly, if y 2 Ix and

x< y, there exists b0 2 Bx with y < b0, whence it follows that y 2 x; b0½ Þ � G. Since y 2 Ix
is arbitrary, we have that Ix � G.

Since x 2 G is arbitrary, we conclude that
S
x2G

Ix � G. On the other hand, since for each

x 2 G there is an open interval Ix with x 2 Ix � G, we also have G � S
x2G

Ix. Therefore we

conclude that G ¼ S
x2G

Ix.

We claim that if x; y 2 G and x 6¼ y, then either Ix ¼ Iy or Ix \ Iy ¼ ;. To prove this

suppose that z 2 Ix \ Iy, whence it follows that ax < z < by and ay < z < bx. (Why?) We

will show that ax ¼ ay. If not, it follows from the Trichotomy Property that either

(i) ax < ay, or (ii) ay < ax. In case (i), then ay 2 Ix ¼ ax; bxð Þ � G, which contradicts

the fact that ay =2 G. Similarly, in case (ii), then ax 2 Iy ¼ ay; by
� �

� G, which contradicts

the fact that ax =2 G. Therefore we must have ax ¼ ay and a similar argument implies that

bx ¼ by. Therefore, we conclude that if Ix \ Iy 6¼ ;, then Ix ¼ Iy.

It remains to show that the collection of distinct intervals Ix : x 2 Gf g is countable. To
do this, we enumerate the set Q of rational numbers Q ¼ r1; r2; . . . ; rn; . . .f g (see Theorem
1.3.11). It follows from the Density Theorem 2.4.8 that each interval Ix contains rational

numbers; we select the rational number in Ix that has the smallest index n in this enumeration

of Q . That is, we choose rn xð Þ 2 Q such that Irn xð Þ ¼ Ix and n(x) is the smallest index n

such that Irn ¼ Ix. Thus the set of distinct intervals Ix; x 2 G, is put into correspondencewith

a subset of N . Hence this set of distinct intervals is countable. Q.E.D.

It is left as an exercise to show that the representation of G as a disjoint union of open

intervals is uniquely determined.

It does not follow from the preceding theorem that a subset of R is closed if and only if

it is the intersection of a countable collection of closed intervals (why not?). In fact, there

are closed sets in R that cannot be expressed as the intersection of a countable collection of

closed intervals in R . A set consisting of two points is one example. (Why?) We will now

describe the construction of a much more interesting example called the Cantor set.

The Cantor Set

The Cantor set, which we will denote by F, is a very interesting example of a (somewhat

complicated) set that is unlike any set we have seen up to this point. It reveals how

inadequate our intuition can sometimes be in trying to picture subsets of R .
The Cantor set F can be described by removing a sequence of open intervals from the

closed unit interval I :¼ 0; 1½ �. We first remove the open middle third 1
3
; 2

3

� �
of [0, 1] to

obtain the set

F1 :¼ 0; 1

3

h i
[ 2

3
; 1

h i
:

We next remove the open middle third of each of the two closed intervals in F1 to obtain

the set

F2 :¼ 0; 1

9

h i
[ 2

9
; 1

3

h i
[ 2

3
; 7

9

h i
[ 8

9
; 1

h i
:
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We see that F2 is the union of 22 ¼ 4 closed intervals, each of which is of the form

k=32; k þ 1ð Þ=32
� �

. We next remove the open middle thirds of each of these sets to get F3,

which is the union of 23 ¼ 8 closed intervals. We continue in this way. In general, if Fn has

been constructed and consists of the union of 2n intervals of the form k=3n; k þ 1ð Þ=3n½ �,
then we obtain the set Fnþ1 by removing the open middle third of each of these intervals.

The Cantor set F is what remains after this process has been carried out for every n 2 N.
(See Figure 11.1.1.)

11.1.10 Definition The Cantor set F is the intersection of the sets Fn; n 2 N , obtained
by successive removal of open middle thirds, starting with [0, 1].

Since it is the intersection of closed sets, F is itself a closed set by 11.1.5(a). We now

list some of the properties of F that make it such an interesting set.

(1) The total length of the removed intervals is 1.

We note that the first middle third has length 1=3, the next two middle thirds have

lengths that add up to 2/32, the next four middle thirds have lengths that add up to 22=33,
and so on. The total length L of the removed intervals is given by

L ¼ 1

3
þ 2

32
þ � � �þ 2n

3nþ1
þ � � � ¼ 1

3

X1

n¼0

2

3

� �n

:

Using the formula for the sum of a geometric series, we obtain

L ¼ 1

3
� 1

1� 2=3ð Þ ¼ 1:

Thus F is a subset of the unit interval [0, 1] whose complement in [0, 1] has total length 1.

Note also that the total length of the intervals that make up Fn is (2/3)
n, which has limit

0 as n ! 1. Since F � Fn for all n 2 N , we see that if F can be said to have ‘‘length,’’ it

must have length 0.

(2) The set F contains no nonempty open interval as a subset.

Indeed, if F contains a nonempty open interval J :¼ a; bð Þ, then since J � Fn for all

n 2 N , we must have 0 < b� a � 2=3ð Þn for all n 2 N . Therefore b � a ¼ 0, whence J is

empty, a contradiction.

(3) The Cantor set F has infinitely (even uncountably) many points.

The Cantor set contains all of the endpoints of the removed open intervals, and these

are all points of the form 2k/3n where k ¼ 0; 1; . . . ; n for each n 2 N . There are infinitely
many points of this form.

The Cantor set actually contains many more points than those of the form 2k=3n;
in fact, F is an uncountable set. We give an outline of the argument. We note that each

Figure 11.1.1 Construction of the Cantor set
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x 2 0; 1½ � can be written in a ternary (base 3) expansion

x ¼
X1

n¼1

an

3n
¼ :a1a2 � � � an � � �ð Þ3

where each an is either 0 or 1 or 2. (See the discussion at the end of Section 2.5.) Indeed,

each x that lies in one of the removed open intervals has an ¼ 1 for some n; for example,

each point in 1
3
; 2

3

� �
has a1 ¼ 1. The endpoints of the removed intervals have two possible

ternary expansions, one having no 1s; for example, 3 ¼ :100 � � �ð Þ3 ¼ :022 � � �ð Þ3. If we
choose the expansion without 1s for these points, then F consists of all x 2 0; 1½ � that have
ternary expansions with no 1s; that is, an is 0 or 2 for all n 2 N . We now define a mapping w
of F onto [0, 1] as follows:

w
X1

n¼1

an

3n

 !
:¼
X1

n¼1

an=2ð Þ
2n

for x 2 F:

That is, w :a1a2 � � �ð Þ3
� �

¼ :b1b2 � � �ð Þ2 where bn ¼ an=2 for all n 2 N and :b1b2 � � �ð Þ2
denotes the binary representation of a number. Thus w is a surjection of F onto [0, 1].

Assuming that F is countable, Theorem 1.3.10 implies that there exists a surjection c of N
onto F, so that w � c is a surjection of N onto [0, 1]. Another application of Theorem

1.3.10 implies that [0, 1] is a countable set, which contradicts Theorem 2.5.5. Therefore F
is an uncountable set.

Exercises for Section 11.1

1. If x 2 0; 1ð Þ, let ex be as in Example 11.1.3(b). Show that if u� xj j < ex, then u 2 0; 1ð Þ.
2. Show that the intervals a; 1ð Þ and �1; að Þ are open sets, and that the intervals b;1½ Þ and

�1; bð � are closed sets.

3. Write out the Induction argument in the proof of part (b) of the Open Set Properties 11.1.4.

4. Prove that 0; 1ð � ¼ T1
n¼1 0; 1þ 1=nð Þ, as asserted in Example 11.1.6(a).

5. Show that the set N of natural numbers is a closed set in R .
6. Show that A ¼ 1=n : n 2 Nf g is not a closed set, but that A [ 0f g is a closed set.

7. Show that the set Q of rational numbers is neither open nor closed.

8. Show that if G is an open set and F is a closed set, then GnF is an open set and FnG is a

closed set.

9. A point x 2 R is said to be an interior point of A � R in case there is a neighborhood V of x

such that V � A. Show that a set A � R is open if and only if every point of A is an interior

point of A.

10. A point x 2 R is said to be a boundary point of A � R in case every neighborhood V of x

contains points in A and points in C Að Þ. Show that a set A and its complement C Að Þ have exactly
the same boundary points.

11. Show that a set G � R is open if and only if it does not contain any of its boundary points.

12. Show that a set F � R is closed if and only if it contains all of its boundary points.

13. If A � R , let A� be the union of all open sets that are contained in A; the set A� is called the

interior of A. Show that A� is an open set, that it is the largest open set contained in A, and that a
point z belongs to A� if and only if z is an interior point of A.
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14. Using the notation of the preceding exercise, let A, B be sets in R . Show that A� � A; A�ð Þ� ¼
A�, and that A \ Bð Þ� ¼ A� \ B�. Show also that A� [ B� � A [ Bð Þ�, and give an example to

show that the inclusion may be proper.

15. If A � R , let A� be the intersection of all closed sets containing A; the set A� is called the

closure of A. Show that A� is a closed set, that it is the smallest closed set containing A, and that

a point w belongs to A� if and only if w is either an interior point or a boundary point of A.

16. Using the notation of the preceding exercise, let A, B be sets in R . Show that we have A �
A�; A�ð Þ� ¼ A�, and that A [ Bð Þ� ¼ A� [ B�. Show that A \ Bð Þ� � A� \ B�, and give an

example to show that the inclusion may be proper.

17. Give an example of a set A � R such that A� ¼ ; and A� ¼ R .
18. Show that if F � R is a closed nonempty set that is bounded above, then sup F belongs to F.

19. If G is open and x 2 G, show that the sets Ax and Bx in the proof of Theorem 11.1.9 are not

empty.

20. If the set Ax in the proof of Theorem 11.1.9 is bounded below, show that ax :¼ inf Ax does not

belong to G.

21. If in the notation used in the proof of Theorem 11.1.9, we have ax < y < x, show that y 2 G.

22. If in the notation used in the proof of Theorem 11.1.9, we have Ix \ Iy 6¼ ;, show that bx ¼ by.

23. Show that each point of the Cantor set F is a cluster point of F.
24. Show that each point of the Cantor set F is a cluster point of C Fð Þ.

Section 11.2 Compact Sets

In advanced analysis and topology, the notion of a ‘‘compact’’ set is of enormous

importance. This is less true in R because the Heine-Borel Theorem gives a very simple

characterization of compact sets in R . Nevertheless, the definition and the techniques

used in connection with compactness are very important, and the real line provides an

appropriate place to see the idea of compactness for the first time.

The definition of compactness uses the notion of an open cover, which we now define.

11.2.1 Definition Let A be a subset ofR . An open cover of A is a collection G ¼ Gaf g of
open sets in R whose union contains A; that is,

A �
[

a

Ga:

If G0 is a subcollection of sets from G such that the union of the sets in G0 also contains A,

then G0 is called a subcover of G. If G0 consists of finitely many sets, then we call G0 a finite
subcover of G.

There can be many different open covers for a given set. For example, if A :¼ 1;1½ Þ,
then the reader can verify that the following collections of sets are all open covers of A:

G0 :¼ 0;1ð Þf g;
G1 :¼ r� 1; rþ 1ð Þ : r 2 Q ; r > 0f g;
G2 :¼ n� 1; nþ 1ð Þ : n 2 Nf g;
G3 :¼ 0; nð Þ : n 2 Nf g;
G4 :¼ 0; nð Þ : n 2 N ; n � 23f g:

11.2 COMPACT SETS 333


