Math 554 Fall 2007 Final

Mark Box

<table>
<thead>
<tr>
<th></th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

| | 100 |

Instruction

1. As in the past... all the same!! - including no books/notes.
2. no calculators.
3. if need more pages - just ask.
1-1 (All of) the subsequential limit points of \(IT \cup \{ \pm \infty \} \) of
the sequence \(\{ (-1)^n \} \) is/are: \(\{ 1, -1 \} \)

1-2 (All of) the subsequential limit points of \(IT \cup \{ \pm \infty \} \) of
the sequence \(\{ \frac{1}{n} \cos \frac{n\pi}{3} \} \) is/are: \(\{ -\infty, 0, +\infty \} \)

1-3 The Bolzano-Weierstrass Theorem says that each bounded subset of \(IT \) has a limit point.

1-4 According to the BW theorem is that each bounded sequence in \(IT \) has a convergent subsequence.

1-5 Define a sequence \(\{ y_n \} \) by \(y_1 = 1 \) and \(y_n := \frac{1}{4} (2y_{n-1} + 3) \) for \(n \geq 2 \).

With some work one can show that \(\{ y_n \} \) is a monotone increasing sequence that is bounded above by \(2 \). Once we know this, we can show that \(\lim_{n \to \infty} y_n = \frac{3}{2} \).

\(L = \frac{1}{4} (2L + 3) \Rightarrow 4L = 2L + 3 \Rightarrow 2L = 3 \)

1-6 \(\lim_{n \to \infty} \frac{\cos \left(\frac{n\pi}{3} \right)}{n^{17}} = 0 \) \quad \text{since} \quad \cos(n\pi) = (-1)^n \quad \text{for} \quad n \text{ even,} \quad \frac{1}{3} \text{ for } n \text{ odd}

1-7 \(\lim_{n \to \infty} \frac{2^n}{3^n - 1} = 0 \)
1-8 \(\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \emptyset \)

1-9 \(\bigcap_{n=1}^{\infty} \left[0, 1-\frac{1}{n} \right] = \emptyset \)

Thus 3: all are subsets of \(\mathbb{R} \).

1-10 \(\bigcap_{n=1}^{\infty} \left[n, \infty \right) = \emptyset \)

TF (1-11) \(C \setminus (A \cap B) = (C \setminus A) \cap (C \setminus B) \) de Morgan

\(\Rightarrow \) A and B are subsets of C.

TF (1-12) A function \(f : X \rightarrow Y \) is 1-to-1 \(\iff \)

\(\text{if } f(x_1) \neq f(x_2) \text{ then } x_1 \neq x_2 \).

TF (1-13) If a function \(f : \mathbb{N} \rightarrow A \) is onto, then \(A \) is at most countable.

TF (1-14) If \(A \) is countable and \(\emptyset \neq B \) and \(B \) is finite, then \(A \times B \) is countable.

TF (1-15) If \(X \) and \(Y \) are nonempty sets and \(X \times Y \), then \(\mathcal{P}(X) \sim \mathcal{P}(Y) \).

[see first page of problem 5 for helpful diagram and notation explanation.]
(1-16) A convergent sequence in \mathbb{R} is bounded.

(1-17) A bounded sequence in \mathbb{R} is convergent.

(1-18) Let $\{a_n\}$ and $\{b_n\}$ be seq. in \mathbb{R}. If $\{a_n\}$ converges and $\{b_n\}$ is bounded, then $\{a_n + b_n\}$ converges.

(1-19) Let $\{a_n\}$ and $\{b_n\}$ be seq. in \mathbb{R}. If $\{a_n\}$ converges to zero and $\{b_n\}$ is bounded, then $\{a_n \cdot b_n\}$ converges to zero.

(1-20) Prof. Girardi wishes the class a peaceful holiday and a healthy New Year.

Of course, this is true but Prof. Girardi will accept any answer. 😊
2 Sets and Functions

Let X and Y be sets and f be a function from X to Y, so
\[f : X \to Y. \]

Let $A \subseteq X$ and $B \subseteq Y$.

Let I be an indexing set and $A_\beta \subseteq X$ for each $\beta \in I$.

(2a) Fill-in blanks.

(2a-1) \(x \in \bigcap_{\beta \in I} A_\beta \iff \forall \beta \in I, x \in A_\beta. \)

(2a-2) By definition of (direct) image, \(y \in f(A) \iff \exists x \in A \text{ such that } y = f(x). \)

(2a-3) By definition of inverse (pre-)image, \(x \in f^{-1}(B) \iff f(x) \in B. \)

(2a-4) The inverse function \(f^{-1} : Y \to X \) of f exists $\iff f$ is bijective.

(2b) Prove one, but not both, of (2b-1) and (2b-2). Space is provided next 2 pages.

(2b-1) Prove that \((f \circ f^{-1})(B) \subseteq B.\)

Also, give an example showing that set equality need not hold.

(2b-2) Prove that \(f \left(\bigcap_{\beta \in I} A_\beta \right) \subseteq \bigcap_{\beta \in I} f(A_\beta). \)

Also, give an example showing that set equality need not hold.

Hints:
- For examples, a picture with everything clearly labeled and a brief explanation is enough.
- For the example in (2b-2), it is enough to do in the special case $I = \{1, 2, 3\}$ and find an example where \(f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2). \)
(2c) Worth 2 pts -

(2c-1) I am doing *(2b-1) or *(2b-2)*. (Circle one)

(2c-2) Check one box (1 pt for correct answer).

☑ I believe my proof is totally (or at least very close to being) correct.
☐ I believe my proof is a good start towards a correct proof but there are some mistakes/holes.
☐ I am just rambling in hope of partial credit.
☐ Other. Explain:

Space for (2b)

2b-1) \text{wts.} \quad (f\circ f^{-1})(B) \subseteq B

Proof. Let \(y \in (f \circ f^{-1})(B) = f(f^{-1}(B)) \), then, by definition of image,

\[\exists x \in f^{-1}(B) \text{ such that } f(x) = y. \]

But then, by definition of inverse image, \(x \in f^{-1}(B) \implies f(x) \in B \).

Since \(f(x) = y, \quad y \in B \).

Thus, \((f \circ f^{-1})(B) \subseteq B \) since \(y \in (f \circ f^{-1})(B) \implies y \in B \quad \forall y \in (f \circ f^{-1})(B) \).

Example. \[\text{Let } A = \{ 0, 1 \} \text{ and } B = \{ 0, 13 \}. \text{ Let } f: A \rightarrow B \]

such that \(f(1) = 1 \). Then \((f \circ f^{-1})(B) = \{ 1 \} \subseteq \{ 0, 13 \} = B \).
(2c) Worth 2 pts -

I am doing (2b-1) or (2b-2). (circle one)

Check one box (1 pt for correct answer).

☐ I believe my proof is totally (or at least very close to being) correct.

☐ I believe my proof is a good start towards a correct proof, but there are some mistakes/holes.

☐ I am just rambling in hope of partial credit.

☐ Other. Explain:

Space for (2b) → (2b-2)

Proof

Let the givens be given. We will show that

\[f(\bigcap_{\beta \in I} A_\beta) = \bigcap_{\beta \in I} f(A_\beta) \quad (\#) \]

Fix \(y \in f(\bigcap_{\beta \in I} A_\beta) \). By definition of the image of a set,

there exists \(x \in \bigcap_{\beta \in I} A_\beta \) such that \(y = f(x) \). Thus, for each \(\beta \in I \),

\[x \in A_\beta \]

by def of intersection and

\[f(x) \in f(A_\beta) \]

by def of image of a set and

\[y \in f(A_\beta) \]

since \(y = f(x) \).

So by definition of intersection, \(y \in \bigcap_{\beta \in I} f(A_\beta) \).

So (\#) holds.
#3 Least Upper Bound (lub) and Greatest Lower Bound (glb)

Let \(\emptyset \neq A \subseteq \mathbb{R} \) and \(A \) be bounded above.

Let \(\alpha \in \mathbb{R} \).

\[
\begin{align*}
\text{or (ii') } \cdots \text{ then } & \exists a \in A \text{ s.t. } \beta < a \leq \alpha \text{.} \\
\text{or (ii'') } \cdots \text{ then } & \exists a \in A \text{ s.t. } \beta < a \text{.}
\end{align*}
\]

(3a) Fill in the blanks.

\(\alpha = \text{lub } A \iff \text{(i) } \alpha \text{ is an upper bound of } A \)

\(\text{(ii) if } \beta \in \mathbb{R} \text{ and } \beta < \alpha, \text{ then } \beta \text{ is not an upper bound of } A \)

(3a-2) If \(\alpha = \text{lub } A \), is it always true that \(\alpha \in A \)? NO (Yes/No)

(3a-3) State the least upper bound property of \(\mathbb{R} \).

Each nonempty subset of \(\mathbb{R} \) that is bounded above has a supremum in \(\mathbb{R} \).

\(\text{i.e. If } \emptyset \neq A \subseteq \mathbb{R} \text{ and } A \text{ is bounded above, then } \sup A \text{ exists and is in } \mathbb{R} \).

(3b) Prove one, but not both, of (3b-1) and (3b-2). Space provided next 2 pages.

(3b-1) Let \(b \in \mathbb{R} \) and define the set \(b + A \) by

\[
b + A := \{ b + a \in \mathbb{R} : a \in A \}.
\]

Prove that

\[
\text{lub } (b + A) = b + \text{lub } A.
\]

(You may use, without proving, that \(b + A \) is bounded above since \(A \) is bounded above)

(3b-2) Let \(\alpha = \text{lub } A \) and \(\alpha \notin A \). Prove that for each \(\epsilon > 0 \), the interval \((\alpha - \epsilon, \alpha) \) contains infinitely many points of \(A \).
(3c) Worth 2 pts.

(3c-1) I am doing (3b-1) or (3b-2). (circle one)

(3c-2) Check one box (1 pt for correct answer).

☐ I believe my proof is totally (or at least very close to being) correct.
☐ I believe my proof is a good start towards a correct proof but there are some mistakes/holes.
☐ I am just rambling in hopes of partial credit.
☐ Other. Explain:

Space for (3b)

Let the givens be given and define

$$b + A := \exists b + a \in \mathbb{R} : a \in A.$$

(WTS \(1_{\text{ub}}(b+A) = b + 1_{\text{ub}} A\).)

Define \(2 := 1_{\text{ub}} A\) and let \(\beta = 1_{\text{ub}}(b+A)\).

We will show inequality in both directions to prove equality.

[\text{3}] Take \(\beta = 1_{\text{ub}}(b+A)\).

Then \(\beta = b + a \forall a \in \mathbb{R} + A\), by definition of \(1_{\text{ub}}\).

So, \(\beta - b = a \forall a \in A\) by simple algebra.

(Continue on next page →)
So, $\beta - b$ is an upper bound of A.

So, $\beta - b \geq \alpha$ since α is the least upper bound of A.

Finally, $\beta \geq \alpha + b$.

Let $a = \text{lub}(A)$.

So, $a \geq \alpha$ as A by definition of lub.

Therefore, $\alpha + b \geq a + b$ and $a + b \in A$.

So, $\beta = \alpha + b$ is an upper bound of $b + A$.

So, $\alpha + b \geq \beta$ since β is the least upper bound of $b + A$.

By showing inequality both ways,

\[\text{lub}(b + A) = b + \text{lub}(A). \]

\[\text{QED} \]
(3c) Worth 2 pts.

(3c-1) I am doing (3b-1) or (3b-2). (circle one)

(3c-2) Check one box. (1 pt for correct answer).

☑ I believe my proof is totally (or at least very close to being) correct.
☐ I believe my proof is a good start towards a correct proof but there are some mistakes/holes.
☐ I am just rambling in hopes of partial credit.
☐ Other. Explain:

Space for (3b)

Theorem: If \(A \) is a non-empty subset of the reals and bounded above with \(\alpha = \text{ lub}(A) \) and \(\alpha \notin A \), then \(\forall \varepsilon > 0 \) the interval \((\alpha - \varepsilon, \alpha)\) contains infinitely many points of \(A \).

Proof: Fix some \(\varepsilon > 0 \). Since \(\varepsilon > 0 \), \(\alpha - \varepsilon < \alpha \) and hence \(\alpha - \varepsilon \) is not an upper bound of \(A \). Thus \(\exists a \in A \) s.t. \(\alpha - \varepsilon < a \leq \alpha \). Since \(a \notin A \) while \(a \in A \), \(a \neq a \) and hence \(a < \alpha \).

Thus \(\alpha - \varepsilon < a < \alpha \). Since \(a \in (\alpha - \varepsilon, \alpha) \), the set \((\alpha - \varepsilon, \alpha) \cap A\) is non-empty. \((\alpha - \varepsilon, \alpha) \cap A\) can be either finite or infinite. We will prove it is infinite by contradiction.

Assume there are only a finite number of points in \((\alpha - \varepsilon, \alpha) \cap A\). Since \((\alpha - \varepsilon, \alpha) \cap A\) is finite and non-empty, we can pick the largest element and call it \(a_0 \). \(a_0 \in (\alpha - \varepsilon, \alpha) \) implies \(a_0 < \alpha \) and hence by the definition of \(\text{ lub}(A) \), \(\exists \alpha \in A \) s.t. \(a_0 < a < \alpha \). However, \(a \notin A \) implies then that \(a_0 < a < \alpha \). We see then that \(a \in (\alpha - \varepsilon, \alpha) \cap A \) and \(a \neq a_0 \). This however, = Continued next page
is a contradiction as we chose \(a_0 \) to be the largest member of the finite set \((\alpha - \epsilon, \alpha) \cap A\). Thus \((\alpha - \epsilon, \alpha) \cap A\) must be infinite, which is to say the interval \((\alpha - \epsilon, \alpha)\) contains infinitely many points of \(A\).

Way #2

Let \(\emptyset \neq A \subseteq \mathbb{R} \) and \(A \) be bounded above. Thus \(A \) has a least upper bound \(\alpha \). Let \(\alpha = \text{lub} A \). Also let \(\alpha \notin A \). Fix \(\epsilon > 0 \).

We will show that the interval \((\alpha - \epsilon, \alpha)\) has infinitely many points of \(A\).

Since \(\alpha = \text{lub} A \), \(\alpha - \epsilon \) is not an upper bound of \(A \).
So \(\exists \ a_1 \in A \) s.t. \(\alpha - \epsilon < a_1 \leq \alpha \). But \(\alpha \notin A \) and \(a_1 \in A \).
So \(\alpha - \epsilon < a_1 < \alpha \).

Since \(\alpha = \text{lub} A \) and \(a_1 < \alpha \), \(a_1 \) is not an upper bound of \(A \).
So \(\exists \ a_2 \in A \) s.t. \(a_1 < a_2 \leq \alpha \). But \(\alpha \notin A \) and \(a_2 \in A \).
So \(a_1 < a_2 < \alpha \).

Continue in this fashion to obtain a set \(S = \{ a_n : n \in \mathbb{N} \} \) such that \(a_n \in A \) for each \(n \in \mathbb{N} \) and
\[
\alpha - \epsilon < a_1 < a_2 < a_3 < a_4 < \ldots < \alpha.
\]

Clearly \(S \subseteq A \cap (\alpha - \epsilon, \alpha) \). Since the \(a_n \)'s are strictly increasing, the \(a_n \)'s are distinct so \(S \) is infinite.
4. Sequences

Let \(\{a_n\}_{n=1}^{\infty} \) and \(\{b_n\}_{n=1}^{\infty} \) be sequences in \(\mathbb{R} \).

Let \(a \in \mathbb{R} \).

(4a) Fill in blanks.

(4a-1) By definition, \(\{a_n\} \) converges to \(a \) (also expressed as \(\lim_{n \to \infty} a_n = a \)) if and only if \(\forall \varepsilon > 0 \) \(\exists K \in \mathbb{N} \) such that \((n \in \mathbb{N} \land n \geq K) \Rightarrow a_n \in N\varepsilon(a) \).

(4a-2) By definition, \(\{a_n\} \) diverges if \(\{a_n\} \) does not converge.

(4a-3) By definition, \(\{a_n\} \) converges to \(+\infty \) if \(\forall M \in \mathbb{R} \) \(\exists N \in \mathbb{N} \) such that \((n \in \mathbb{N} \land n \geq N) \Rightarrow a_n > M \).

(4a-4) A monotone decreasing sequence \(\{a_n\} \) converges to a (finite) real number if and only if \(\{a_n\} \) is bounded below.

(4b) Prove one, but not both, of (4b-1) and (4b-2). Space is provided next 2 pages.

(4b-1) Let \(\{a_n\} \) converge to \(a \). Let \(\{b_n\} \) satisfy that \(\forall \varepsilon > 0 \) \(\exists M, N \in \mathbb{N} \) such that \((n \geq M \land n \geq N) \Rightarrow |a_n - b_n| < \varepsilon \). Show that \(\{b_n\} \) converges and find the limit \(\lim_{n \to \infty} b_n \).

Remark: Figure out what \(\{b_n\} \) converges to and then use an \(\varepsilon-N \) argument to show that \(\{b_n\} \) does converge to that number.

(4b-2) Let \(\emptyset \neq A \subseteq \mathbb{R} \) and \(A \) be bounded above. Let \(\alpha := \text{lub} A \in \mathbb{R} \).

Show that (i.e., explain how to construct) there is a sequence \(\{a_n\} \) such that \(a_n \in A \) for each \(n \in \mathbb{N} \) and \(\lim_{n \to \infty} a_n = \alpha \).

Hint: Case 1: Let \(\alpha \in A \). Case 2: Let \(\alpha \notin A \).

Case 1 is easy. For Case 2, you may use without proving (4b-2) of this exam.
(4c) Worth 2 pts.

(4c-1) I am doing (4b-1) or (4b-2). (circle one).

(4c-2) Check one box (1 pt for correct answer).

☐ I believe my proof is totally (or at least very close to being) correct.

☐ I believe my proof is a good start towards a correct proof but there are some mistakes/holes.

☐ I am just rambling in hopes of partial credit.

☐ Other. Explain:

Space for (4b)

\[4b-1 \quad a_n \to a, (\forall \varepsilon > 0) \exists N \in \mathbb{N} \left[n > N \implies |a_n - bn| < \frac{\varepsilon}{3} \right] \]

Proof. Fix \(\varepsilon > 0 \). Let \(N \in \mathbb{N} \) st. \(\forall n \in \mathbb{N}, n \geq N, \quad |a_n - bn| < \frac{\varepsilon}{3} \).

Existence: since we can choose any \(\varepsilon, \frac{\varepsilon}{3} \), and find an \(M \) big enough so that \(|a_n - bn| < \frac{\varepsilon}{3} \) for all \(n > M \). Now, since \(a_n \to a \), \(\exists N_0 \in \mathbb{N} \) such that

\[|a_n - a| < \frac{\varepsilon}{3} \quad \text{for} \quad n > N_0. \]

By the triangle inequality,

\[|bn - a| \leq |bn - bn| + |a_n - a|. \]

Now let \(N = \max(N_0, N_1) \). Then \(\forall n \geq N, n \geq N_0 \)

\[|a_n - bn| < \frac{\varepsilon}{3} \quad \text{and} \quad |a_n - a| < \frac{\varepsilon}{3}. \]

Thus, \(|bn - a| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \).

So \(bn \) converges to \(a \) by definition of convergence.
To finish the proof (2 more lines from next page were): Consequently for any fixed $\varepsilon > 0$, $\forall n \in N$ where $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$
\[|x - a_n| < \varepsilon \] and thus $\lim_{n \to \infty} a_n = x$.

(4c) Worth 2 pts.

(4e-1) I am doing (4b-1) or (4b-2), (circle one).

(4e-2) Check one box (1 pt for correct answer).

- I believe my proof is totally (or at least very close to being) correct.
- I believe my proof is a good start towards a correct proof but there are some mistakes/holes.
- I am just rambling in hopes of partial credit.
- Other. Explain:

Space for (4b)

Let $\emptyset \neq A \subseteq \mathbb{R}$ and A is bounded above. Define $\alpha = \text{lub}(A)$. Construct a sequence $\{a_n\}$ s.t. $\forall n \in N$, $a_n \in A$ and $\lim_{n \to \infty} a_n = \alpha$.

Case 1: Let $x \in A$. Then we define our sequence $\{a_n\}$ as $\forall n \in N$
\[a_n = x. \] Since $x \in A$ clearly $\forall n$, $a_n \in A$. $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ such that $\forall n \geq N$
\[|a_n - x| = |x - x| = 0 < \varepsilon \] and hence $\lim_{n \to \infty} a_n = x$.

Case 2: Let $x \notin A$. Then from (4b-2) we know $(\alpha - \varepsilon, \alpha) \cap A$ contains infinitely many points $y \geq 0$. We then define our sequence $\{a_n\}$ s.t. $\forall n \in N$, a_n is some element of $(\alpha - \frac{1}{n}, \alpha) \cap A$. That is a_n is a point selected from $(\alpha - \frac{1}{n}, \alpha) \cap A$, a_n is some fixed element of $(\alpha - \frac{1}{n}, \alpha) \cap A$ and so on. And $\alpha \in (\alpha - \frac{1}{n}, \alpha) \cap A$ implies that $a_n \in A$.

For any fixed $\varepsilon > 0$, let $N = \left\lceil \frac{1}{\varepsilon} \right\rceil$. Then $N \geq \frac{1}{\varepsilon}$ and hence $N \leq \varepsilon$.

Thus $\forall n \geq \frac{1}{\varepsilon} \Rightarrow (\alpha - \frac{1}{n}, \alpha) \subseteq (\alpha - \varepsilon, \alpha)$, and hence $\forall n \geq \frac{1}{\varepsilon}$ one $(\alpha - \varepsilon, \alpha)$. $a_n \in (\alpha - \varepsilon, \alpha)$ implies $\alpha - \varepsilon < a_n$ and $a_n < \alpha$. Thus $\alpha - a_n < \varepsilon$, since $a_n < \alpha$.

$a_n > 20$ and we can write $|a_n - x| < \varepsilon$ or $|a_n - x| < \varepsilon$.

#5 Countability

(5a) Fill-in blanks.

(5a-1) Two sets A and B are equivalent (i.e. have the same cardinality), denoted $A \sim B$, if and only if there exists a function $f : A \rightarrow B$ such that f is bijective.

(5a-2) By definition, the set A is countable if $A \sim \mathbb{N}$.

(5a-3) \mathbb{Q} is countable.

(5a-4) \mathbb{R} is uncountable.

(5a-4) If each C_n is at most countable, then $\bigcup C_n$ is at most countable.

Fill-in the blanks of (5a-3) & (5a-4) with "uncountable, countable, atmost countable", using each choice once and only once.

(5b) Prove one, but not both, of (5b-1) and (5b-2). "Space." is provided next 2 pages.

Let $F = \{0, 1\} \subseteq \mathbb{R}$.

So F is the set with two elements: the number 0 and the number 1.

One encounters the set F often in probability classes: a trial (such as tossing a coin) with 2 possible outcomes (0 for heads, 1 for tails).

(5b-1) Let

$$C = \{ (e_1, e_2, \ldots, e_N) \in \mathbb{R}^N : N \in \mathbb{N} \text{ and each } e_j \in F \}.$$

Show C is countable.

(5b-2) Let

$$D = \{ \{ e_j \}_{j=1}^{\infty} : \text{each } e_j \in F \}.$$

Show D is uncountable.
(5c) Worth 2 points.

(5c-1) I am doing (5b-1) or (5b-2). (circle one).

(5c-2) Check one box.

☐ I believe my proof is totally (or at least very close to being) correct.
☐ I believe my proof is a good start towards a correct proof but there are some mistakes/holes.
☐ I am just rambling in hope of partial credit.
☐ Other, Explain:

Hints on (5b)

Hints for (5b-1)

1. So C is the set of all (finite) n-tuples of 0's and 1's. Pictorially, you can think of C as:

 \[
 (0) \quad (1) \\
 (0,0), (0,1), (1,0), (1,1) \\
 (0,0,0), (0,0,1), (0,1,1), \ldots, (1,1,1)
 \]

2. You can use, without proving, (5a-4). Don't forget to show C is not finite.

Hints for (5b-2)

1. So D is the set of (infinite) sequences of 0's and 1's.
2. Outline of Pf.

 Step 1: D is not finite because \[\ldots\]. So D is infinite.
 Step 2: Assume D is cb. WTF \[\Rightarrow\]
 D cb so can enumerate \(D = \{x_n : n \in \mathbb{N}\}\) where \(\chi_n = \{e_1^n, e_2^n, e_3^n, \ldots, e_i^n, \ldots\}\).
 Now use a Cantor Diagonalization Argument to find \[\not\Leftarrow\].
Theorem: The set $C = \{e_1, e_2, \ldots, e_n\} \subset R^N$, with $e_i \in F$, is countable.

Proof: One could note that the function $f: C \rightarrow N$ defined by $f((e_1, e_2, \ldots, e_n)) = 2^n + \left(\sum e_i \cdot 2^{n-i}\right) - 1$ is a bijection.

Should we not wish to dive into the realm of binary representations, we could begin by noting that the subset $C_0 = \{e_0, (0,0), (0,0,0), (0,0,0,0), \ldots\}$ is infinite since $C_0 \cap N$ by the function which simply counts the numbers of zeroes in a given n-tuple. Since $C_0 \subseteq C$ and C_0 is infinite, C must be infinite.

Next, note that $C = \bigcup_{e_i} \{e_1, e_2, \ldots, e_n\} : e_i \in F$. Since each e_i can only have one of two values (there are exactly 2^n elements in $\{e_1, e_2, \ldots, e_n\} : e_i \in F$), as 2^n is just some finite number, $\bigcup_{e_i} \{e_1, e_2, \ldots, e_n\} : e_i \in F$ is the countable union of at most countable sets (since every finite set is at most countable) and by (5a-4) C must therefore be at most countable. An at most countable set can either be finite or countable, and since we have shown C is not finite, it therefore must be countable.
Proof. Let $F = \{0, 1\} \in \mathbb{R}$ and
\[D = \{ \{e_i\}_{i=1}^{\infty} : \text{each } e_i \in F \} \]
We will show that D is uncountable.

To see that D is not finite, consider the function
\[g : \mathbb{N} \rightarrow D \] where $g(n)$ is the sequence with 1 in the nth coordinate and 0 in the remaining coordinates, so
\[g(n) = \{0, 0, \ldots, 0, 1, 0, 0, \ldots\} \]
Clearly g is 1-to-1 so D is not finite.

Now assume D is countable. So we can enumerate D, say $D = \{x_n : n \in \mathbb{N}\}$ with
\[x_n = \{\varepsilon_1^n, \varepsilon_2^n, \varepsilon_3^n, \ldots, \varepsilon_n^n, \ldots\} \]
Pictorially we have:
\[
\begin{align*}
x_1 &= \{\varepsilon_1^1, \varepsilon_2^1, \varepsilon_3^1, \varepsilon_4^1, \varepsilon_5^1, \ldots\} \\
x_2 &= \{\varepsilon_1^2, \varepsilon_2^2, \varepsilon_3^2, \varepsilon_4^2, \varepsilon_5^2, \ldots\} \\
x_3 &= \{\varepsilon_1^3, \varepsilon_2^3, \varepsilon_3^3, \varepsilon_4^3, \varepsilon_5^3, \ldots\} \\
x_4 &= \{\varepsilon_1^4, \varepsilon_2^4, \varepsilon_3^4, \varepsilon_4^4, \varepsilon_5^4, \ldots\} \\
x_5 &= \{\varepsilon_1^5, \varepsilon_2^5, \varepsilon_3^5, \varepsilon_4^5, \varepsilon_5^5, \ldots\} \\
\end{align*}
\]
Define $x = \{\varepsilon_i : i = 1, 2, 3, \ldots\}$ where
\[\varepsilon_i = 1 - \varepsilon_i^1 \begin{cases} 1 & \text{if } \varepsilon_i^1 = 0 \\ 0 & \text{if } \varepsilon_i^1 = 1 \end{cases} \]
Clearly, $x \in D$. But for each $n \in \mathbb{N}$, the sequence x and the sequence x_n have different nth coordinates so $x_n \neq x$.

But $D = \{x_n : n \in \mathbb{N}\}$ and $x \neq x_n \forall n \in \mathbb{N}$ implies that $x \notin D$. This is a contradiction.

So D is uncountable.