On this homework (provided your specifically reference it when used) you may use the following Theorem from class. **Nested Interval Property**. (Really a Theorem).

Let $(I_n)_{n=1}^{\infty}$ be a sequence of nonempty $\underbrace{\text{closed}}_{n=1}$ bounded intervals of \mathbb{R} that are nested in the sense

$$I_{j+1} \subseteq I_j$$
 for each $j \in \mathbb{N}$.

Then

- (1) $\bigcap_{n=1}^{\infty} I_n$ is nonempty,
- (2) and if fuuthermore the $\lim_{n\to\infty} \operatorname{length}(I_n) = 0$ then $\bigcap_{n=1}^{\infty} I_n$ has preciously one element.

Problem 39 Variant of Exercise 2.5.9.

 $\S2.5$ BS4p52

1. For each $n \in \mathbb{N}$, let

$$K_n := [n, \infty).$$

Prove that $\bigcap_{n=1}^{\infty} K_n = \emptyset$.

2. In the above statement of the **Nested Interval Property**, can the assumption that the intervals are <u>bounded</u> be omitted? Justify your answer. BTW: each K_n is closed (see top of p. 47).

.....

Spring 2022 Page 1 of 1