Pin(s): 5??, 5?? Problem: 35 Last Name(s): ???, ??? 22s Math 554

On this homework, specifically say where you are using Archimedean's Property (or one of it's corollaries) when you use it. Below is a list of the versions of Archimedean's Property that we showed in class.

Thm. (Archimedean's Property) $(\forall b \in \mathbb{R}) \ (\forall a \in \mathbb{R}^{>0}) \ (\exists n \in \mathbb{N}) \ [b < na]$

Cor. 1. $(\forall x \in \mathbb{R}) \ (\exists n \in \mathbb{N}) \ [x < n]$

Cor. 2. $(\forall \epsilon > 0)$ $(\exists n \in \mathbb{N})$ $\left[\frac{1}{n} < \epsilon\right]$ Cor. 3. $(\forall z \in \mathbb{R}^{>0})$ $(\exists n \in \mathbb{N})$ $[n-1 \le z < n]$

On this homework, you may use the below lemmas. Hints on their proofs, which are straightforward, are given so you do not have to prove the lemmas.

Lemma 1. If $n \in \mathbb{N}$, then $n < 2^n$. Idea of proof. Use math induction.

Lemma 2. If $x \in [1, \infty)$, then $x + 1 \le 2^x$. Idea of proof. Use the Race Track Principle with the (slow) function s(x) := x + 1 and the $\langle \text{fast} \rangle$ function $f(x) := 2^x$ with $s, f : [1, \infty) \to \mathbb{R}$. Recall, $f'(x) = (\ln 2) 2^x$.

35 | Variant of Exercise 2.4.14.

 $\S 2.4$ BS4p46

Let $\epsilon > 0$. Prove that there exists $n \in \mathbb{N}$ such that

$$\frac{1}{2^n} < \epsilon.$$

Spring 2022 Page 1 of 1