Put your <u>Pin and Name</u> into the LaTeX template (see first few lines) as well as on back of the last page in the <u>upper right corner</u>. Turn in a <u>stapled</u> hard copy (copied one-sided) of your homework (folded to 4.25x11 size) at the beginning of class If you need to use a staper, there is a stapler outside my office (1011c) door for your convenience.

24. Exercise 2.2.101. Not in book. Triangle Inequality.

The following facts are proved in the book.

Triangle Inequalities. Let $x, y \in \mathbb{R}$. Then

 $|x+y| \le |x|+|y|$ (Thm. 2.2.3)

$$|x - y| \le |x| + |y|$$
 (Cor. 2.2.4b)

$$||x| - |y|| \le |x - y|$$
 (Cor. 2.2.4a)

Using the above 3 triangle inequalities (which are proved in the book), prove that (a fourth triangle inequality)

$$||x| - |y|| \le |x + y| \tag{24}$$

Remark. The purpose of this problem is to get all four Triangle Inequalities; indeed, **after** proving the inequality in (24), we can combine (24) with (Thm. 2.2.3), (Cor. 2.2.4a), and (Cor. 2.2.4b) to get the four inequalites:

$$||x| - |y|| \le |x \pm y| \le |x| + |y| \quad . \tag{\triangle-inequalities}$$

Cut this out and then put your answer here.

25. Exercise 2.3.101. Not in book. Max/Min and Sup/Inf chart.

Consider the below subsets S of \mathbb{R} . Find the max S and min S, provided they exist (use \nexists for does not exists). Find the sup S and inf S in the extended sense (so in $\widehat{\mathbb{R}} \stackrel{\text{i.e.}}{=} \mathbb{R} \cup \{\pm \infty\}$). No proofs needed. Just use your intuition. Just type your solutions directly into the below chart. Some samples from class are included.

	$\stackrel{S}{\Downarrow}$	$\min S$	$\inf S$	$\max S$	$\sup S$			
$\text{recalls} \Rightarrow$	$S\subseteq \mathbb{R}$	must be in S	in $\widehat{\mathbb{R}}$	must be in S	in $\widehat{\mathbb{R}}$			
Samples from class.								

§2.2 BS4p32

§2.3 BS4

sample	$\left[0,\sqrt{2}\right]$	0	0	$\sqrt{2}$	$\sqrt{2}$			
sample	$\mathbb R$	∄	$-\infty$	∄	$+\infty$			
Now onto the assigned homework problems.								
(1)	$\{x \colon x^2 - 4x - 5 \le 0\}$							
(2)	$\left\{1 + \frac{(-1)^n}{n} \colon n \in \mathbb{N}\right\}$							
(3)	$(0,1)\cap\mathbb{Q}$							

26. Variant of Exercise 2.3.10.

Let A and B be nonempty bounded subsets of \mathbb{R} .

(1) Is $A \cup B$ is a nonempty bounded subsets of \mathbb{R} ? Explain.

(2) Prove that $\sup(A \cup B) = \sup \{\sup A, \sup B\}.$

.....

Cut this out and then put your answer here.

27. Variant of Exercise 2.3.11.

Let $\emptyset \neq A \subseteq B \subseteq \mathbb{R}$ and B be bounded above. Prove that

 $\inf B \le \inf A \le \sup A \le \sup B.$

Cut this out and then put your answer here.

BS4p40

 $\S{2.3}$

§2.3 BS4p40