Unformal Summaries 1.4

Theorem - a statement that describes a pattern or relationship among quantities or structure.

Proof - a justification of the truth of a theorem.

Axioms (Postulates) - an initial set of statements.

Undefined terms - concepts fundamental to the context of study.

Definitions - new concepts.

Replacement Rule - often used in combination with the equivalences of.

Modus Ponens - the most fundamental rule of reasoning, which is based on the tautology:

\[P \land (P \Rightarrow Q) \Rightarrow Q. \]
modus ponens rule - states that "At any time after P and $P \implies Q$ appear in a proof, state that Q is true."

direct proof - the first and most important proof method of the statement of the form $P \implies Q$, which proceeds in a step by step fashion from the antecedent P to the consequent Q.

Replacement Rule Example:

Suppose we have been able to establish the step:

"It is not the case that"

x is even and prime.

Because the form of this statement is $\neg(P \land Q)$, where P is "x is even" and Q is "x is prime."

We may deduce that:

"x is not even or"

x is not prime.

- which has form $\neg P \lor \neg Q$.

We have applied the replacement rule; using one of De Morgan's laws.
A working knowledge of equivalences of Theorems 1.1.1 and 1.2.2 is essential.

The Replacement Rule allows you to use definitions in two ways:

1) If you are told or have shown that \(x \) is odd, then you can correctly state that for some natural number \(k \), \(x = 2k + 1 \).

 - You now have an equation to use.

2) If you need to prove that \(x \) is odd, then the definition gives you something equivalent to work toward:

 "It suffices to show that \(x \) can be expressed as \(x = 2k + 1 \) for some \(k \)."

 - These two ways are useful in writing proofs.

Tautology Rule Example:

If a proof involves a real number \(x \), you may at anytime assert "Either \(x > 0 \) or \(x \leq 0 \)" since this is an instance of the tautology \(P \lor \neg P \).