Read the whole handout $\S 5.0$ Set Theory Transition. Then do the below problems.
\triangleright. As in class, let $\mathbb{R}^{>0}$ be the positive real numbers $\left\langle\right.$ so $\left.\mathbb{R}^{>0}=\{x \in \mathbb{R}: x>0\}\right\rangle$.

- Let the universal set U be \mathbb{R}. An index set I will be $\mathbb{R}^{>0}$ or a subset of $\mathbb{R}^{>0}$.

For each $r \in \mathbb{R}^{>0}$, define T_{r} to be the closed interval $\left[-r^{2}, r^{2}\right]$ of \mathbb{R}, i.e.,

$$
T_{r}=\left\{x \in \mathbb{R}:-r^{2} \leq x \leq r^{2}\right\}
$$

Find the sets listed below the dotted line. No justification needed. Your answer may be in: set builder notation, roster method, interval (closed, open, or clopen) of the real line notation, \mathbb{R}, \emptyset.
Hint. In Thinking Land, draw a pictorial representation for $T_{1}, T_{2}, T_{3}, T_{17}$ and for some arbitrary T_{6} 's.
(©. Here is a sample. The index set is $I=\{m \in \mathbb{N}: 1 \leq m \leq 6\}$. 〈Note $I=\{1,2,3,4,5,6\}$ so $\left.\bigcap_{i \in I} T_{i}=\bigcap_{i=1}^{6} T_{i}.\right\rangle$

$$
\bigcap_{i \in I} T_{i}=[-1,1]
$$

Hint. $\emptyset \neq\{0\}$

1. The index set is $I=\{m \in \mathbb{N}: 1 \leq m \leq 6\}$.

$$
\bigcup_{i \in I} T_{i}=\text { cut this out and put your solution here }
$$

2. The index set is \mathbb{N}.

$$
\bigcap_{i \in \mathbb{N}} T_{i}=
$$

3. The index set is \mathbb{N}.

$$
\bigcup_{i \in \mathbb{N}} T_{i}=
$$

4. The index set is $\mathbb{R}^{>0}$.

$$
\bigcap_{i \in \mathbb{R}>0} T_{i}=
$$

5. The index set is $\mathbb{R}^{>0}$.

$$
\bigcup_{i \in \mathbb{R}^{>0}} T_{i}=
$$

