Hint.

Read the whole handout §5.0 Set Theory Transition. Then do the below problems.

•. Let the <u>universal set</u> U be N. An <u>index set</u> I will be N or a subset of N. For each $n \in I$, let $A_n = \{k \in \mathbb{N} \colon k \ge n\}.$

Find the sets listed below the dotted line. Your solutions should be either: \emptyset , \mathbb{N} , or expressed using the <u>roster method</u>. Do <u>NOT</u> express using set builder notation. No justification needed. In this problem, \mathbb{N} is playing *double duties*: $U = \mathbb{N}$ and $I \subseteq \mathbb{N}$.

Hint. In *Thinking Land*, draw a pictorial representation for A_1 , A_2 , A_3 , A_{17} , and for some arbitrary A_n 's. Hint. If you do not know what the roster method is, look it up on handout §2.3 Open Sentences and Sets. Hint. Latex Help. See through here for empty set \emptyset .

1. The index set $I = \{5, 6, 7\}$. So we are taking the union of three sets.

$$\bigcup_{i=5}^{7} A_i = cut \ this \ out \ and \ put \ your \ solution \ here$$

2. The index set $I = \{3, 4, 5, 6, 7\}$.

$$\bigcup_{i=3}^{7} A_i =$$

3. The index set $I = \mathbb{N} \stackrel{\text{i.e.}}{=} \{1, 2, 3, 4, \ldots\}.$

$$\bigcup_{i \in \mathbb{N}} A_i =$$

4. The index set $I = \{1, 2, 3\}$. So we are taking the intersection of three sets.

$$\bigcap_{i=1}^{3} A_i =$$

5. The index set $I = \mathbb{N}$.

$$\bigcap_{i \in \mathbb{N}} A_i =$$