Read the whole handout $\S 5.0$ Set Theory Transition. Then do the below problems.

- Let the universal set U be \mathbb{N}. An index set I will be \mathbb{N} or a subset of \mathbb{N}. For each $n \in I$, let

$$
A_{n}=\{k \in \mathbb{N}: k \geq n\}
$$

Find the sets listed below the dotted line. Your solutions should be either: \emptyset, \mathbb{N}, or expressed using the roster method. Do NOT express using set builder notation. No justification needed.
Hint. In this problem, \mathbb{N} is playing double duties: $U=\mathbb{N}$ and $I \subseteq \mathbb{N}$.
Hint. In Thinking Land, draw a pictorial representation for $A_{1}, A_{2}, A_{3}, A_{17}$, and for some arbitrary A_{n} 's.
Hint. If you do not know what the roster method is, look it up on handout $\S 2.3$ Open Sentences and Sets.
Hint. Latex Help. See through here for empty set \emptyset.

1. The index set $I=\{5,6,7\}$. So we are taking the union of three sets.

$$
\bigcup_{i=5}^{7} A_{i}=\text { cut this out and put your solution here }
$$

2. The index set $I=\{3,4,5,6,7\}$.

$$
\bigcup_{i=3}^{7} A_{i}=
$$

3. The index set $I=\mathbb{N} \stackrel{\text { i.e. }}{=}\{1,2,3,4, \ldots\}$.

$$
\bigcup_{i \in \mathbb{N}} A_{i}=
$$

4. The index set $I=\{1,2,3\}$. So we are taking the intersection of three sets.

$$
\bigcap_{i=1}^{3} A_{i}=
$$

5. The index set $I=\mathbb{N}$.

$$
\bigcap_{i \in \mathbb{N}} A_{i}=
$$

