Evaluation of Proof Exercise

Following the instructions for (linked) *Evaluation of Proofs* exercises (which also are posted on the course homework page), evaluate the below justification of the given conjecture.

Conjecture B. If m is an integer, then 5 divides $(m^5 - m)$.

Proposed Proof. We shall show that Conjecture B is true. Let $m \in \mathbb{Z}$. We will prove that 5 divides $(m^5 - m)$ by proving that $(m^5 - m) \equiv 0 \pmod{5}$. We will use cases. For Case 1, let

Modulo arithmetic gives $(m^5 - m) \equiv (0^5 - 0) \pmod{5}$. Thus $(m^5 - m) \equiv 0 \pmod{5}$ in Case 1. For Case 2, let $m \equiv 1 \pmod{5}$.

 $m \equiv 0 \pmod{5}$.

Modulo arithmetic gives $(m^5 - m) \equiv (1^5 - 1) \pmod{5}$. Thus $(m^5 - m) \equiv 0 \pmod{5}$ in Case 2. For Case 3, let

$m \equiv 2 \pmod{5}$. Then, using modulo arithmetic, we get $m^5 - m \equiv 2^5 - 2 \pmod{5}$. Note $2^5 - 2 \equiv 32 - 2$ and so

$$m^5 - m \equiv 30 \pmod{5}.$$
 (50)

Since 30 = (5)(6) + 0

$$30 \equiv 0 \pmod{5}.$$
 (51)

Since congruence is transitive, (50) and (51) gives $m^5 - m \equiv 0 \pmod{5}$. This finishes Case 3. We have just shown Conjecture B is true by using proof by cases.

DELETE this whole sentence and THEN put your answer to ALL parts down here.