Evaluation of Proof Exercise
Following the instructions for (linked) Evaluation of Proofs exercises (which also are posted on the course homework page), evaluate the below justification of the given conjecture.

Conjecture A. For all integers a and b, if $(a+2 b) \equiv 0(\bmod 3)$, then $(2 a+b) \equiv 0(\bmod 3)$.
Proposed Proof. We sahll show that Conjecture A is true. We assume $a, b \in \mathbb{Z}$ and $(a+2 b) \equiv 0$ $(\bmod 3)$. We shall show that $(2 a+b) \equiv 0(\bmod 3)$.

Since $(a+2 b) \equiv 0(\bmod 3)$, we know 3 divides $a+2 b$. Hence, there exists $m \in \mathbb{Z}$ such that

$$
\begin{equation*}
a+2 b=3 m . \tag{16}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a=3 m-2 b . \tag{17}
\end{equation*}
$$

For $(2 a+b) \equiv 0(\bmod 3)$, there exists an integer x such that

$$
\begin{equation*}
2 a+b=3 x . \tag{18}
\end{equation*}
$$

Hence by equations (17) and (18) and then algebra

$$
\begin{aligned}
2(3 m-2 b)+b & =3 x \\
6 m-3 b & =3 x \\
3(2 m-b) & =3 x \\
2 m-b & =x .
\end{aligned}
$$

Since $(2 m-b) \in \mathbb{Z}$ this proves that 3 divides $(2 a+b)$ and hence, $(2 a+b) \equiv 0(\bmod 3)$.
Hint. $(16) \Longleftrightarrow a+2 b=3 m \Longleftrightarrow 2 a+4 b=6 m \Longleftrightarrow 2 a+b+3 b=6 m$.

DELETE this whole sentence and THEN put your answer to ALL parts down here.

