Pin: ???
Name: ?

- Theorem 1. There are no natural numbers j and n with $n \geq 2$ and $j^{2}+1=2^{n}$.

Prove Theorem 1.
Hints: Thm. 1 can be expressed as

$$
\begin{equation*}
\sim(\exists j \in \mathbb{N})\left(\exists n \in \mathbb{N}^{\geq 2}\right)\left[j^{2}+1=2^{n}\right] \tag{WTS}
\end{equation*}
$$

So a negation of Thm. 1 is \langle since $\sim[\sim P] \equiv P\rangle$

$$
\begin{equation*}
(\exists j \in \mathbb{N})\left(\exists n \in \mathbb{N}^{\geq 2}\right)\left[j^{2}+1=2^{n}\right] . \tag{~WTS}
\end{equation*}
$$

For a proof by contradiction, we would assume (\sim WTS) hold true and look for a contradiction. Let's say in the case that j is even, we could find a contradiction. And in the case that j is odd, we could find another contradiction. Then either case (j even or odd) leads to a contradiction. Furthermore, the 2 cases are exhaustive. Note if a number can be written as 2^{n}, then you know something about the parity, as well as prime factorization, of that number.

DELETE this whole sentence and THEN put your answer to ALL parts down here.

