Following the instructions for (linked) Evaluation of Proofs exercises (which also are posted on the course homework page), evaluate the below justification of the given conjecture.

Conjecture C. For each real number x,

$$
x(1-x) \leq \frac{1}{4} .
$$

Proposed Proof. We will proof Conjecture C is true by using a proof by contradiction. By way of contradiction, assume that $x \in \mathbb{R}$ satisfies that

$$
\begin{equation*}
x(1-x)>\frac{1}{4} . \tag{1}
\end{equation*}
$$

If we multiply both sides of the inequality in (1) by 4 , we obtain

$$
\begin{equation*}
4 x(1-x)>1 \tag{2}
\end{equation*}
$$

However, if we let $x=3$, we then see from (2) that

$$
\begin{align*}
& 4 x(1-x)>1 \\
& 4 \cdot 3(1-3)>1 \\
& 12(-2)>1 \\
&-24>1 . \tag{3}
\end{align*}
$$

The last inequality in (3) is clearly a contradiction. We have just shown that assuming Conjecture C is false leads to a contradiction.

We have proved Conjecture C is true.

DELETE this whole sentence and THEN put your answer to ALL parts down here.

