►. 1.

The symbol for the rational numbers is \mathbb{Q} while the symbol for the irrational numbers is $\mathbb{R} \setminus \mathbb{Q}$.
So you can express that x is an irrational number by $x \notin \mathbb{Q}$ or by $x \in \mathbb{R} \setminus \mathbb{Q}$.
Recall for any sets R and Q, the set <u>R</u> set minus Q is the set $R \setminus Q \stackrel{\text{def.}}{=} \{x \in R \colon x \notin Q\}.$
Note the difference in direction in the backslash for set minus $(R \setminus Q)$ and quotient of <u>numbers</u> $(1/2 = 0.5)$.
You may use the fact we showed in class that if p is a prime then \sqrt{p} is irrational.
Theorem 1. If x is a real number, then $(x + \sqrt{2})$ is irrational or $(-x + \sqrt{2})$ is irrational. Symbolically write Theorem 1.

2. Prove Theorem 1. Hint. You may use (without proving) Proposition 3.19 (p. 123)

.....

DELETE this whole sentence and THEN put your answer to ALL parts down here.