The symbol for the rational numbers is \mathbb{Q} while the symbol for the irrational numbers is $\mathbb{R} \setminus \mathbb{Q}$. So you can express that x is an irrational number by $x \notin \mathbb{Q}$ or by $x \in \mathbb{R} \setminus \mathbb{Q}$. Recall for any sets R and Q, the set \underline{R} set minus Q is the set $R \setminus Q \stackrel{\text{def.}}{=} \{x \in R : x \notin Q\}$. Note the difference in direction in the backslash for set minus $(R \setminus Q)$ and quotient of numbers (1/2 = 0.5).

A symbol for the positive real numbers is $\mathbb{R}^{>0}$ where $\mathbb{R}^{>0} = \{x \in \mathbb{R} : x > 0\}$. You may use the fact we showed in class that if p is a prime then \sqrt{p} is irrational.

- **•**. Conjecture **A**. For each positive real number x, if x is irrational, then x^2 is irrational.
- 1. Symbolically write Conjecture A.
- 2. State whether Conjecture A is true or false.
- 3. If Conjecture A is true, then provide a proof of Conjecture A. If Conjecture A is false, then provide a counterexample that shows (and clearly explains why) Conjecture A if false.

.....

DELETE this whole sentence and THEN put your answer to ALL parts down here.