```
The symbol for the rational numbers is \mathbb{Q while the symbol for the irrational numbers is }\mathbb{R}\\mathbb{Q}\mathrm{ .}
So you can express that }x\mathrm{ is an irrational number by }x\not\in\mathbb{Q}\mathrm{ or by }x\in\mathbb{R}\\mathbb{Q}\mathrm{ .
Recall for any sets }R\mathrm{ and }Q\mathrm{ , the set }R\mathrm{ set minus Q is the set R\Q \}\stackrel{\mathrm{ def. }}{=}{x\inR:x\not\inQ}\mathrm{ .
Note the difference in direction in the backslash for set minus (R\Q) and quotient of numbers (1/2 = 0.5).
```

－Proposition 3．19．Symbolically written．（TS book $\S 3.3$ page 123）

$$
\begin{equation*}
\left(\forall(x, y) \in \mathbb{R}^{2}\right)[(x \in \mathbb{Q} \wedge x \neq 0 \wedge y \notin \mathbb{Q}) \Longrightarrow x y \notin \mathbb{Q}] \tag{1}
\end{equation*}
$$

1．We have discussed closure properties of number systems（e．g．， $\mathbb{R}, \mathbb{Q}, \mathbb{R} \backslash \mathbb{Q}$ ）under cetain operations （e．g．，addition，multiplication，division by a nonzero number）．Proposition 3.19 gives that the irrational numbers are closed under a certain operation．What is this operation？
Hint：Complete sentences．＂The irrational numbers are closed under the operation of ？？？？？＂．
2．Using that $\sim[P \Longrightarrow Q] \equiv[P \wedge(\sim Q)]$ 〈idea：negation of a promise is a lie〉，symbolically write a negation（denial）if the statement in（1）．Your answer can not contain the negation symbol \sim 〈nor any variant of the \sim symbol \rangle ．Your answer can contain the symbols \in and \notin ．
hint．You may use Proposition 3.19 in the ER＇s from $\S 3.3$ and beyond．

DELETE this whole sentence and THEN put your answer to ALL parts down here．

