Let $y_{1}, y_{2}, y_{3}, y_{4}$ be real numbers. The mean, \bar{y}, of these four numbers is defined to be the sum of the four numbers divided by 4 . That is,

$$
\bar{y}=\frac{y_{1}+y_{2}+y_{3}+y_{4}}{4} .
$$

Prove that there exists a y_{i} with $1 \leq i \leq 4$ such that $\bar{y} \leq y_{i}$.
Hint. Symbolically written, this problem says

$$
\left(\forall\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}^{4}\right)(\exists i \in\{1,2,3,4\})\left[\frac{y_{1}+y_{2}+y_{3}+y_{4}}{4} \leq y_{i}\right] \text {. }
$$

Vaguely speaking, this problem says: (the average of 4 real numbers) \leq (the largest of those 4 real nubmers). One way to show this is to let $y_{\text {max }}$ be the largest of $y_{1}, y_{2}, y_{3}, y_{4}$. The notation $y_{\text {max }}$ should greatly help. Think about what kind of inequalitites can you get between $y_{\text {max }}$ and the y_{i} 's.

DELETE this whole sentence and THEN put your answer to ALL parts down here.

