▶.

Let y_1, y_2, y_3, y_4 be real numbers. The **mean**, \overline{y} , of these four numbers is defined to be the sum of the four numbers divided by 4. That is,

$$\overline{y} = \frac{y_1 + y_2 + y_3 + y_4}{4}.$$

Prove that there exists a y_i with $1 \le i \le 4$ such that $\overline{y} \le y_i$.

Hint. Symbolically written, this problem says

$$\left(\forall (y_1, y_2, y_3, y_4) \in \mathbb{R}^4 \right) (\exists i \in \{1, 2, 3, 4\}) \left[\begin{array}{c} y_1 + y_2 + y_3 + y_4 \\ 4 \end{array} \le y_i \right].$$

Vaguely speaking, this problem says: (the average of 4 real numbers) \leq (the largest of those 4 real nubmers). One way to show this is to let y_{max} be the largest of y_1, y_2, y_3, y_4 . The notation y_{max} should greatly help. Think about what kind of inequalities can you get between y_{max} and the y_i 's.

DELETE this whole sentence and THEN put your answer to ALL parts down here.