Recall the Previously Shown Results from Ch. 1 and Section 3.2
Lemma SEE . If x is an even integer and y is an even integer, then $x + y$ is an even integer.
Lemma SEO. If x is an even integer and y is an odd integer, then $x + y$ is an odd integer.
Lemma SOO. If x is an odd integer and y is an odd integer, then $x + y$ is an even integer.
Lemma PEA. If x is an even integer and y is an integer, then $x \cdot y$ is an even integer.
Lemma POO. If x is an odd integer and y is an odd integer, then $x \cdot y$ is an odd integer.
Theorem 3.10 . An integer n is even if and only if n^2 is even.
Corollary 3.10 . An integer n is odd if and only if n^2 is odd.

<u>After</u> you finish this problem (i.e., ER 3.2.1), you may use it on <u>later</u> problems (i.e., problems after ER 3.2.1d). ER 3.2.1, as well as Theorem/Corollary 3.10, are used often in later problems.

- ▶. Theorem 1c. An integer n is even if and only if n^3 is even. Corollary 1d. An integer n is odd if and only if n^3 is odd.
- 1. Symbolically write Theorem 1c.
- 2. Prove Theorem 1c by using previous shown results (listed above).
- 3. Symbolically write Corollary 1d.
- 4. Prove Corollary by using Theorem 1c and equivalent logical equivalence.

.....

DELETE this whole sentence and THEN put your answer to ALL parts down here.