Latex help: " a divides b " and " a does not divides b " and " a is congruent to $b \bmod n$ " and " a is not congruent to b mod n ":

$$
a \mid b \quad, \quad a \nmid b \quad, \quad a \equiv b \quad(\bmod n) \quad, \quad a \not \equiv b \quad(\bmod n)
$$

Do not forget needed parentheses: $a \mid(b-17)$ is correct while $a \mid b-17$ is not right.
The Ch 3: Methods of Proofs handout gave several formulation of $a \equiv b(\bmod n)$ and remarked: You can use (on HW\& exams, unless otherwise indicated) any of the above equivalent formations as the definition of $a \equiv b(\bmod n)$. See (1)-(5) and ($\left.1^{\prime}\right)-\left(5^{\prime}\right)$. The Ch. 3 handout also explains Modulo Arithmetic and transitivity.

- Theorem 1. For integers a and b, if $a \equiv 7(\bmod 8)$ and $b \equiv 3(\bmod 8)$, then $a b \equiv 5(\bmod 8)$.

1. Symbolically write Theorem 1.
2. Prove Theorem 1 using Modulo Arithmetic and the fact that congruence is transitive. In your proof:

- specifically state where you are using the transitivity of congruence
- the only place you should use the definition of congruence (in any form) is to do calculations with specific integers (and explain this step). I.e.: Note $27 \equiv 3(\bmod 8)$ by definition of congruence modulo 8 since $27-3=24$ and $8 \mid 24$.

DELETE this whole sentence and THEN put your answer to ALL parts down here.

