Pin: ???
Name: ?
D. Def. A theorem is a true statement for which there a proof.

- The following Theorem A is about certain cubic equations.

Theorem A. Let $b \in \mathbb{R}$. If f is a cubic function of the form $f(x)=x^{3}-x+b$ and $b>1$, then the function f has exactly one x-intercept.

The following Theorem B is about x-intercepts of functions:
Theorem B. If f and g are functions with $g(x)=k \cdot f(x)$, where k is a nonzero real number, then f and g have exactly the same x-intercepts.

Using only Theorem A. Theorem B and some simple algebraic manipulations, what can be concluded about the functions given by the following formulas? Justify (as if you are explaining to a confused fellow student) your answer using complete sentences.

1. $f(x)=x^{3}-x+7$
2. $\quad h(x)=-x^{3}+x-5$. Hint: Rewrite h as $h(x)=-\left(x^{3}-x+5\right)$.
3. $\quad F(x)=2 x^{3}-2 x+7$

DELETE this whole sentence and THEN put your answer to ALL parts down here.
1.
2.
3.

