Read the whole (linked) handout §5.0 Set Theory Transition. Then do the below problems.

- \triangleright . As in class, let $\mathbb{R}^{>0}$ be the positive real numbers $\langle \text{so } \mathbb{R}^{>0} = \{x \in \mathbb{R} : x > 0\} \rangle$.
- ▶. Let the universal set U be \mathbb{R} . An index set I will be $\mathbb{R}^{>0}$ or a subset of $\mathbb{R}^{>0}$.

For each $r \in \mathbb{R}^{>0}$, define T_r to be the closed interval $[-r^2, r^2]$ of \mathbb{R} , i.e.,

$$T_r = \left\{ x \in \mathbb{R} \colon -r^2 \le x \le r^2 \right\}.$$

Find the sets listed below the dotted line. No justification needed. Your answer may be in: set builder notation, roster method, interval (closed, open, or clopen) of the real line notation, \mathbb{R} , \emptyset .

Hint. In Thinking Land, draw a pictorial representation for T_1 , T_2 , T_3 , T_{17} and for some arbitrary T_r 's.

$$\bigcap_{i \in I} T_i = [-1, 1]$$

 $_{\mathrm{Hint.}}\quad\emptyset\neq\{0\}$

.....

1. The index set is $I = \{m \in \mathbb{N} : 1 \le m \le 6\}$.

$$\bigcup_{i \in I} T_i = \underline{\hspace{1cm}}$$

2. The index set is \mathbb{N} .

$$\bigcap_{i\in\mathbb{N}} T_i = \underline{\hspace{1cm}}$$

3. The index set is \mathbb{N} .

4. The index set is $\mathbb{R}^{>0}$.

5. The index set is $\mathbb{R}^{>0}$.

$$\bigcup_{i \in \mathbb{R}^{>0}} T_i = \underline{\hspace{1cm}}$$

230716