b.

Sundstrom $\S5.1$ p226. Math 300

Our goal is to review our highschool *set theory* and, using what we have learned thus far in Math 300, make a transition from a high school to an advanced math viewpoint.

Defs. **Definitions**. Let A_1 and A_2 be subsets of a universal set U. (eg, $U = \mathbb{R}^2$ & draw 2 subsets A_1 and A_2 in \mathbb{R}^2) §5.1 a. The **union** of A_1 and A_2 , denoted $A_1 \cup A_2$, is the set of all elements that are in A_1 or A_2 . Thus

$$A_{1} \cup A_{2} \stackrel{\text{def}}{=} \{x \in U \colon x \in A_{1} \text{ or } x \in A_{2}\} \stackrel{\text{other}}{\underset{\text{notation}}{=}} \bigcup_{i=1}^{2} A_{i}$$

$$\stackrel{\text{note}}{=} \{x \in U \colon \text{there exists an } i \in \{1, 2\} \text{ such that } x \in A_{i}\} \stackrel{\text{other}}{\underset{\text{notation}}{=}} \bigcup_{i \in \{1, 2\}} A_{i}$$
The **intersection** of A_{1} and A_{2} , denoted $A_{1} \cap A_{2}$, is the set of all elements in both A_{1} and A_{2} . So
$$A_{1} \cap A_{2} \stackrel{\text{def}}{=} \{x \in U \colon x \in A_{1} \text{ and } x \in A_{2}\} \stackrel{\text{other}}{\underset{\text{notation}}{=}} \bigcap_{i \in \{1, 2\}}^{2} A_{i}$$

$$\stackrel{\text{note}}{=} \{x \in U : \text{ for all } i \in \{1, 2\} \text{ we have that } x \in A_i\} \quad \stackrel{\text{other}}{=} \underset{\text{notation}}{\overset{\text{other}}{=}} \quad \bigcap_{i \in \{1, 2\}} A_i$$

c. The relative complement of A_1 with respect to A_2 , also called A_2 set minus A_1 , is the set

$$A_2 - A_1 \stackrel{\text{def}}{=} \{ x \in U \colon x \in A_2 \text{ and } x \notin A_1 \} \stackrel{\text{other}}{=} A_2 \setminus A_1$$

d. The **complement** of A_1 , denoted $(A_1)^C$, is the set of all elements of U that are not in A_1 . So

$$(A_1)^C \stackrel{\text{def}}{=} \{x \in U \colon x \notin A_1\} \stackrel{\text{note}}{=} U - A_1$$

 \mathbb{N} Read the beginning of section 5.1, up to but not including Set Equality, Subsets, and Proper Subsets. $\S5.1$
p215-218 \mathbb{N} Let the universe be \mathbb{N} and consider the follow subsets of \mathbb{N} . (Recall that $\mathbb{N} \stackrel{\text{Roster}}{=}_{\text{Method}} \{1, 2, 3, 4, 5, 6, 7, \ldots\}$.) $A_1 = \{x \in \mathbb{N} : x \ge 7\}$ $A_2 = \{x \in \mathbb{N} : x \text{ is odd}\}$

$$A_3 = \{ x \in \mathbb{N} \colon x \text{ is a multiple of } 3 \} \qquad \qquad A_4 = \{ x \in \mathbb{N} \colon x \text{ is even} \}$$

Use the <u>roster method</u> to list all of the elements of each of the below 5 sets. (Can do on copy of this ER.)

.....

1.
$$A_1 \cap A_2 =$$

- $2. \qquad A_1 \cup A_2 = _$
- $3. \qquad (A_1 \cup A_2)^C = _$
- 4. $(A_1)^C \cap (A_2)^C =$
- 5. $A_1 A_4 =$ _____