Pin:
Union and Intersection of two sets
Name:
Sundstrom §5.1 p226. Math 300
Our goal is to review our highschool set theory and, using what we have learned thus far in Math 300, make a transition from a high school to an advanced math viewpoint.

Defs. \quad Definitions. Let A_{1} and A_{2} be subsets of a universal set U. $\left\langle\mathrm{eg}, U=\mathbb{R}^{2} \&\right.$ draw 2 subsets A_{1} and A_{2} in $\left.\mathbb{R}^{2}\right\rangle$
a. The union of A_{1} and A_{2}, denoted $A_{1} \cup A_{2}$, is the set of all elements that are in A_{1} or A_{2}. Thus

$$
\begin{aligned}
A_{1} \cup A_{2} & \stackrel{\text { def }}{=}\left\{x \in U: x \in A_{1} \text { or } x \in A_{2}\right\} \quad \stackrel{\substack{\text { other } \\
=}}{\substack{\text { notation }}} \bigcup_{i=1}^{2} A_{i} \\
& \stackrel{\text { note }}{=}\left\{x \in U: \text { there exists an } i \in\{1,2\} \text { such that } x \in A_{i}\right\} \underset{\substack{\text { other } \\
\text { notation }}}{\bigcup_{i \in\{1,2\}}} A_{i}
\end{aligned}
$$

b. The intersection of A_{1} and A_{2}, denoted $A_{1} \cap A_{2}$, is the set of all elements in both A_{1} and A_{2}. So

$$
\begin{aligned}
& A_{1} \cap A_{2} \stackrel{\text { def }}{=}\left\{x \in U: x \in A_{1} \quad \underset{\sim}{\text { and }} x \in A_{2}\right\} \quad \begin{array}{c}
\text { other } \\
\text { notation }
\end{array} \\
& \bigcap_{i=1}^{2} A_{i} \\
& \stackrel{\text { note }}{=}\left\{x \in U: \text { for all } i \in\{1,2\} \text { we have that } x \in A_{i}\right\} \quad \begin{array}{c}
\text { other } \\
= \\
\text { notation }
\end{array} \\
& \bigcap_{i \in\{1,2\}} A_{i}
\end{aligned}
$$

c. The relative complement of A_{1} with respect to A_{2}, also called A_{2} set minus A_{1}, is the set

$$
A_{2}-A_{1} \stackrel{\text { def }}{=}\left\{x \in U: x \in A_{2} \underset{\sim}{\text { and }} x \notin A_{1}\right\} \quad \begin{gathered}
\text { other } \\
\text { notation }
\end{gathered} \quad A_{2} \backslash A_{1} .
$$

d. The complement of A_{1}, denoted $\left(A_{1}\right)^{C}$, is the set of all elements of U that are not in A_{1}. So

$$
\left(A_{1}\right)^{C} \stackrel{\text { def }}{=}\left\{x \in U: x \notin A_{1}\right\} \stackrel{\text { note }}{=} U-A_{1}
$$

D. Read the beginning of section 5.1 , up to but not including Set Equality, Subsets, and Proper Subsets.

Let the universe be \mathbb{N} and consider the follow subsets of \mathbb{N}. (Recall that $\mathbb{N} \underset{\text { Method }}{\text { Roster }}\{1,2,3,4,5,6,7, \ldots\}$.)

$$
\begin{array}{ll}
A_{1}=\{x \in \mathbb{N}: x \geq 7\} & A_{2}=\{x \in \mathbb{N}: x \text { is odd }\} \\
A_{3}=\{x \in \mathbb{N}: x \text { is a multiple of } 3\} & A_{4}=\{x \in \mathbb{N}: x \text { is even }\}
\end{array}
$$

Use the roster method to list all of the elements of each of the below 5 sets. (Can do on copy of this ER.)

1. $A_{1} \cap A_{2}=$ \qquad
2. $A_{1} \cup A_{2}=$ \qquad
3. $\left(A_{1} \cup A_{2}\right)^{C}=$ \qquad
4. $\left(A_{1}\right)^{C} \cap\left(A_{2}\right)^{C}=$ \qquad
5. $\quad A_{1}-A_{4}=$ \qquad
