
Pin:
Name:

Variant of 4.1.19.
Sundstrom §4.1 p186. Math 300

Explorations and Activities Exercise

I. Throughout this ER, let P (n) be 〈 the open sentence in the variable n ∈ N 〉

n∑
j=1

j =
n2 + n+ 1

2
. (P (n))

I. Theorem 19. For each n ∈ N we have that P (n) ⇒ P (n+ 1).

Partial Proof of Theorem 19. Let P (n) be the open sentence in the variable n ∈ N
n∑

j=1

j =
n2 + n+ 1

2
.

Fix n ∈ N. Let P (n) be true 〈 think of as the inductive hypothesis 〉. Thus

n∑
j=1

j =
n2 + n+ 1

2
. (IH)

We shall show that P (n+ 1) is true 〈 think of as the inductive conclusion 〉, i.e., we shall show that

n+1∑
j=1

j =
(n+ 1)2 + (n+ 1) + 1

2
. (IC)

Using (IH) and algebra we get

n+1∑
j=1

j =

[
n∑

j=1

j

]
+ (n+ 1)

and by (IH) we get

=

[
n2 + n+ 1

2

]
+ (n+ 1)

and now by algebra 〈 remember, look at where you are going for guidance on what algebra to do next 〉

= for you ... getting a common demoninator is a good start

= for you ... now keep doing simple algebra ...

= for you ... use as many lines as you need ...

= for you ... until you get the Right Hand Side of (IC) ...

=
(n+ 1)2 + (n+ 1) + 1

2
.

We have just show that (IC) holds.

Thus, for each n ∈ N, if P (n) is true then P (n+ 1) is true. �
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The Importance of the Base Step

Most of the work done in an induction proof is usually in proving the inductive step. This was
certainly the case in Proposition 4.2 (pg. 175). However, the basis step is an essential part of
the proof. As this Exercise illustrates, an induction proof is incomplete without the Base Step.

Recall P (n) is the open sentence in the variable n ∈ N
n∑

j=1

j =
n2 + n+ 1

2
. (P (n))

1. Complete the partial proof of Theorem 19 by writing out the (entire) boxed part with the needed

algebra steps included. Use as many rows as you need.

2. Is P (1) true? Is P (2) true? Using Progress Check 4.3 (see pages 177 and 511), for what n ∈ N is

P (n) true? Explain how this shows that the basis step is an essential part of a proof by induction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

230723 Page 2 of 2


