Following the instructions for (linked) Evaluation of Proofs exercises (which also are posted on the course homework page), evaluate the below justification of the given conjecture.

Conjecture 22A. For all integers $a$ and $b$, if $(a+2 b) \equiv 0(\bmod 3)$, then $(2 a+b) \equiv 0(\bmod 3)$.
Proposed Proof. We shall show that Conjecture 22A is true. We assume $a, b \in \mathbb{Z}$ and $(a+2 b) \equiv 0$ $(\bmod 3)$. We shall show that $(2 a+b) \equiv 0(\bmod 3)$.

Since $(a+2 b) \equiv 0(\bmod 3)$, we know 3 divides $a+2 b$. Hence, there exists $m \in \mathbb{Z}$ such that

$$
\begin{equation*}
a+2 b=3 m \tag{16}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a=3 m-2 b . \tag{17}
\end{equation*}
$$

For $(2 a+b) \equiv 0(\bmod 3)$, there exists an integer $x$ such that

$$
\begin{equation*}
2 a+b=3 x \tag{18}
\end{equation*}
$$

Hence by equations (17) and (18) and then algebra

$$
\begin{aligned}
2(3 m-2 b)+b & =3 x \\
6 m-3 b & =3 x \\
3(2 m-b) & =3 x \\
2 m-b & =x .
\end{aligned}
$$

Since $(2 m-b) \in \mathbb{Z}$ this proves that 3 divides $(2 a+b)$ and hence, $(2 a+b) \equiv 0(\bmod 3)$.
hint. Symbolically written Conjecture 22A is

$$
\left(\forall(a, b) \in \mathbb{Z}^{2}\right)[\overbrace{(a+2 b) \equiv 0 \quad(\bmod 3)}^{\text {hypothesis }} \Longrightarrow \overbrace{(2 a+b) \equiv 0 \quad(\bmod 3)}^{\text {conclusion }}] .
$$

hint.

