-. Theorem 8. There are no natural numbers j and n with $n \geq 2$ and $j^{2}+1=2^{n}$.

1. Prove Theorem 8.
hint. Do we know something about the parity (even/odd-ness) of a number of the form 2^{s} for some $s \in \mathbb{N}$?
hint. Thm. 8 can be expressed symbolically as

$$
\begin{equation*}
\sim(\exists j \in \mathbb{N})\left(\exists n \in \mathbb{N}^{\geq 2}\right)\left[j^{2}+1=2^{n}\right] \tag{WTS}
\end{equation*}
$$

So a negation of Thm. 8 is \langle since $\sim[\sim P] \equiv P\rangle$

$$
(\exists j \in \mathbb{N})\left(\exists n \in \mathbb{N}^{\geq 2}\right)\left[j^{2}+1=2^{n}\right]
$$

or, since there are two \exists 's in a row they can be interchanged, is

$$
\begin{equation*}
\left(\exists n \in \mathbb{N}^{\geq 2}\right)(\exists j \in \mathbb{N})\left[j^{2}+1=2^{n}\right] \tag{~WTS}
\end{equation*}
$$

For a proof by contradiction, we would assume (\sim WTS) holds true and look for a contradiction. Let's say in the case that j is even we could find a contradiction while in the case that j is odd we could find another contradiction. Then either case (j even or odd) leads to a contradiction. Furthermore, theses two cases for j are exhaustive (i.e. cover all possible cases for j).

