Following the instructions for (linked) Evaluation of Proofs exercises (which also are posted on the course homework page), evaluate the below justification of the given conjecture.

- Conjecture B. For all real numbers x and y, if x is irrational and y is rational, then $x+y$ is irrational.

Proposed Proof. We will proof Conjecture B is true by using proof by contradiction. By way of contradiction, assume that x and y are real numbers such that where

$$
\begin{align*}
& x \notin \mathbb{Q}, \tag{1}\\
& y \in \mathbb{Q} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
x+y \in \mathbb{Q} . \tag{3}
\end{equation*}
$$

Since both $x+y$ and y are rational (cf. (2), (3)) and the rational numbers are closed under subtraction, we have

$$
\begin{equation*}
(x+y)-y \in \mathbb{Q} . \tag{4}
\end{equation*}
$$

However, $(x+y)-y=x$, and hence we can conclude from (4) that

$$
\begin{equation*}
x \in \mathbb{Q} \tag{5}
\end{equation*}
$$

Note (5) is a contradiction to the assumption in (1) that $x \notin \mathbb{Q}$. Hence assuming that Conjecture B is false leads to a contradition.

We have proven Conjecture B must be true, i.e., for all real numbers x and y, if x is irrational and y is rational, then $x+y$ is irrational.

