Pin:
Name:
The symbol for the rational numbers is \mathbb{Q} while the symbol for the irrational numbers is $\mathbb{R} \backslash \mathbb{Q}$.
So you can express that x is an irrational number by $x \notin \mathbb{Q}$ or by $x \in \mathbb{R} \backslash \mathbb{Q}$.
Recall for any sets R and Q, the set R set minus Q is the set $R \backslash Q \stackrel{\text { def. }}{=}\{x \in R: x \notin Q\}$.
Note the difference in direction in the slash for set minus $(R \backslash Q)$ and quotient of numbers $(1 / 2=0.5)$.
A symbol for the positive real numbers is $\mathbb{R}^{>0}$ where $\mathbb{R}^{>0}=\{x \in \mathbb{R}: x>0\}$.
You may use the fact we showed in class that if p is a prime then \sqrt{p} is irrational.

- Conjecture A. For each positive real number x, if x is irrational, then x^{2} is irrational.

1. Symbolically write Conjecture A.
2. State whether Conjecture A is true or false.
3. Justisfy your answer to the previous part. You should understand that this means the following. If Conjecture A is true, then provide a proof of Conjecture A. If Conjecture A is false, then provide a counterexample and clearly explain why the conterexample is indeed a counterexample.
