The symbol for the rational numbers is \mathbb{Q} while the symbol for the irrational numbers is $\mathbb{R} \setminus \mathbb{Q}$. So you can express that x is an irrational number by $x \notin \mathbb{Q}$ or by $x \in \mathbb{R} \setminus \mathbb{Q}$. Recall for any sets R and Q, the <u>set</u> R set minus Q is the <u>set</u> $R \setminus Q \stackrel{\text{def.}}{=} \{x \in R : x \notin Q\}$. Note the difference in direction in the slash for set minus $(R \setminus Q)$ and quotient of <u>numbers</u> (1/2 = 0.5).

- ▶. Proposition 3.19. [TS textbook §3.3 page 123]. For all real numbers x and y, if x is rational and $x \neq 0$ and y is irrational, then xy is irrational.
- ▷. Symbolically written, Proposition 3.19 says

$$\left(\forall (x,y) \in \mathbb{R}^2\right) \left[(x \in \mathbb{Q} \land x \neq 0 \land y \notin \mathbb{Q}) \implies xy \notin \mathbb{Q} \right] \tag{1}$$

- Complete the next sentence (write out the whole sentence, filling in the blank).
 Proposition 3.19 gives that the irrational numbers are closed under the operation of multiplication by ______.
- ^{rmk.} We have discussed closure properties of number systems (e.g., \mathbb{R} , \mathbb{Q} , $\mathbb{R} \setminus \mathbb{Q}$) under cetain operations (e.g., addition, multiplication, division by a <u>nonzero</u> number). Finally we see the irrational real numbers are closed under some operation.
- 2. Using that $\sim [P \implies Q] \equiv [P \land (\sim Q)]$ (idea: negation of a promise is a lie), symbolically write a negation (denial) if the statement in (1). Your answer <u>can not</u> contain the negation symbol $\sim \langle \text{nor} \rangle$ any variant of the \sim symbol). Your answer <u>can</u> contain the symbols \in and \notin .

.....

hint. You may (and probably will) use Proposition 3.19 in the ER's from §3.3 and beyond.