Following the instructions for (linked) Evaluation of Proofs exercises (which also are posted on the course homework page), evaluate the below justification of the given conjecture.

- Conjecture A. If n is an odd integer, then $n+6$ is an odd integer.
hint. Symbolically written: $(\forall n \in \mathbb{Z})$ [n is odd $\Longrightarrow n+6$ is odd $]$
Proposed Proof. For $n+6$ to be an odd integer, there must exist an integer k such that

$$
n+6=2 k+1
$$

By subtracting 6 from both sides of this equation, we obtain

$$
\begin{aligned}
n & =2 k-6+1 \\
& =2(k-3)+1
\end{aligned}
$$

By the closure properties of the integers, $(k-3)$ is an integer, and hence, the last equation implies that n is an odd integer. This proves that if n is an odd integer, then $n+6$ is an odd integer.

Warning. If you provide a proof, you may not use the lemmas on the Ch. 1 Handout. So you can not use Lemma POO and friends. Use the definition of even/odd.

