Recall (a.k.a., hint) you may use either below (equivalent) formulation as the definition of rational number.
Def. 1. A real number x is rational provided

$$
(\exists a \in \mathbb{Z})(\exists b \in \mathbb{Z})\left[x=\frac{a}{b} \wedge b \neq 0\right] .
$$

Def. 2. A real number x is rational provided

$$
(\exists a \in \mathbb{Z})(\exists b \in \mathbb{N})\left[x=\frac{a}{b}\right]
$$

Def. 1 appeared on p11. Def. 2 is often easier to work with.

- Theorem 1. If $p, q \in \mathbb{Q}$ with $p<q$, then there exists $x \in \mathbb{Q}$ with $p<x<q$.

1. Symbolically write Theorem 1. Hint. Your answer should be of the form

$$
\left(\forall(p, q) \in \mathbb{Q}^{2}\right)[p<q \Longrightarrow(\exists x \in \mathbb{Q})[\text { ? what goes here? }]] .
$$

2. Prove Theorem 1. You may use the closure properites of \mathbb{Q} that we covered in Chapter 1.

Hint: let geometry lead your thinking land but make sure you justify in your proof by using algebra.

