Following the instructions for (linked) Evaluation of Proofs exercises (which also are posted on the course homework page), evaluate the below justification of the given conjecture.
-. Conjecture 1. For all integers a, b, and c with $a \neq 0$, if a divides $b c$ then a divides b or a divides c.
Hint. Symbolically written: $\left(\forall(a, b, c) \in \mathbb{Z}^{\neq 0} \times \mathbb{Z} \times \mathbb{Z}\right)[(a \mid(b c)) \Longrightarrow(a|b \vee a| c)]$
Proposed Proof. We assume that a, b, and c are integers such that $a \neq 0$ and that a divides $b c$. So, there exists an integer k such that

$$
\begin{equation*}
b c=k a . \tag{1}
\end{equation*}
$$

We now factor k as $k=m n$, where m and n are integers. We then see, from (1) that

$$
\begin{equation*}
b c=m n a . \tag{2}
\end{equation*}
$$

Equation (2) implies that

$$
\begin{equation*}
b=m a \quad \text { or } \quad c=n a . \tag{3}
\end{equation*}
$$

and hence, by (3) and definition of divides, $a \mid b$ or $a \mid c$.

