In this exercise，you may use（without proof）the following prior results from the（linked）Ch． 1 class handout．

$$
\begin{array}{|l|}
\hline \text { Previously Shown Results } \\
\hline
\end{array}
$$

Lemma SEE．If x is an even integer and y is an even integer，then $x+y$ is an even integer．
Lemma SEO．If x is an even integer and y is an odd integer，then $x+y$ is an odd integer．
Lemma SOO．If x is an odd integer and y is an odd integer，then $x+y$ is an even integer．
Lemma PEA．If x is an even integer and y is an integer，then $x \cdot y$ is an even integer．
Lemma POO．If x is an odd integer and y is an odd integer，then $x \cdot y$ is an odd integer．

Division Algorithm

Division Algorithm．For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ ，there exist unique integers q and r so that

$$
a=n q+r \quad \text { and } \quad 0 \leq r<n .
$$

In $\S 1.1$ ，we studied closure properties of standard number systems（e．g． \mathbb{Z} and \mathbb{Q} ，see p．11－12 and 32）．
We can extend the closure idea to other subsets S of real numbers．We say that
－A subset S of real numbers is closed under addition provided that if x and y are in the set S ，then $x+y \in S$ ．
－A subset S of real numbers is closed under multiplication provided that if x and y are in the set S ，then $x \cdot y \in S$ ．
－A subset S of real numbers is closed under subtraction provided that if x and y are in the set S ，then $x-y \in S$ ．
－Consider the below subsets of of the real numbers defined by：〈note T is not in set builder notation〉
O is the set of all odd integers
E is the set of all even integers

$$
T=\{3 n+2 \in \mathbb{Z}: n \in \mathbb{Z}\} \stackrel{\text { i.e. }}{=}\{\ldots,-7 .-4,-1,2,5,8, \ldots\}
$$

Below the dotted line，answer each question YES or NO．Then justify your Yes／No answer by either
－（for yes）explaining which and why prior class result 〈from above box〉 say yes（no formal proof needed）
－（for no）providing an counterexample showing the answer is no．
O．1．Is O closed under addition？
O．2．Is O closed under multiplication？
O．3．Is O closed under substraction？
E．1．Is E closed under addition？
E．2．Is E closed under multiplication？
E．3．Is E closed under substraction？
T．1．Is T closed under addition？
T．2．Is T closed under multiplication？
T．3．Is T closed under substraction？

