Variant of 2.3.7.

Name: Sundstrom §2.3 p63. Math 300

Closure Explorations

Explorations and Activities Exercise

In this exercise, you may use (without proof) the following prior results from the (linked) Ch. 1 class handout.

Previously Shown Results

Lemma SEE. If x is an even integer and y is an even integer, then x + y is an even integer.

Lemma SEO. If x is an even integer and y is an odd integer, then x + y is an odd integer.

Lemma SOO. If x is an odd integer and y is an odd integer, then x + y is an even integer.

Lemma PEA. If x is an even integer and y is an integer, then $x \cdot y$ is an even integer.

Lemma POO. If x is an odd integer and y is an odd integer, then $x \cdot y$ is an odd integer.

Division Algorithm

Division Algorithm. For all $n \in \mathbb{N}$ and $a \in \mathbb{Z}$, there exist unique integers q and r so that

$$a = nq + r$$
 and $0 \le r < n$.

In §1.1, we studied closure properties of standard number systems (e.g. \mathbb{Z} and \mathbb{Q} , see p. 11–12 and 32).

We can extend the closure idea to other subsets S of real numbers. We say that

- A subset S of real numbers is <u>closed under addition</u> provided that if x and y are in the set S, then $x + y \in S$.
- A subset S of real numbers is closed under multiplication provided that if x and y are in the set S, then $x \cdot y \in S$.
- A subset S of real numbers is closed under subtraction provided that if x and y are in the set S, then $x y \in S$.
- \triangleright Consider the below subsets of of the real numbers defined by: \langle note T is not in set builder notation \rangle

O is the set of all odd integers

E is the set of all even integers

$$T = \{3n + 2 \in \mathbb{Z} : n \in \mathbb{Z}\} \stackrel{\text{i.e.}}{=} \{\dots, -7, -4, -1, 2, 5, 8, \dots\}.$$

Below the dotted line, answer each question YES or NO. Then justify your Yes/No answer by either

- (for yes) explaining which and why prior class result (from above box) say yes (no formal proof needed)
- (for no) providing an counterexample showing the answer is no.
- O.1. Is O closed under addition?
- O.2. Is O closed under multiplication?
- O.3. Is O closed under substraction?
- E.1. Is E closed under addition?
- E.2. Is E closed under multiplication?
- E.3. Is E closed under substraction?
- T.1. Is T closed under addition?
- T.2. Is T closed under multiplication?
- T.3. Is T closed under substraction?

.....

230712 Page 1 of 1