- \triangleright . **Definition**. Let A point $(x_0, y_0) \in \mathbb{R}^2$ is:
 - inside the circle whose equation is $(x-h)^2 + (y-k)^2 = r^2$ provided $(x_0-h)^2 + (y_0-k)^2 < r^2$
 - on the circle whose equation is $(x-h)^2 + (y-k)^2 = r^2$ provided $(x_0-h)^2 + (y_0-k)^2 = r^2$
 - outside the circle $(x-h)^2 + (y-k)^2 = r^2$ provided $(x_0 h)^2 + (y_0 k)^2 > r^2$.
- ▶. Theorem 1. Each point on or inside the circle whose equation is

$$(x-1)^2 + (y-2)^2 = 4$$

is also inside the circle whose equation is

$$x^2 + y^2 = 26 .$$

Symbolically written: $(\forall (x,y) \in \mathbb{R}^2) [(x-1)^2 + (y-2)^2 \le 4 \implies x^2 + y^2 < 26].$

.....

- 1. Let x, h, r be real numbers and r > 0. For each of the following statements, indicate whether the statement is TRUE or FALSE. No justification needed.
 - (a) If $(x h)^2 \le r^2$, then $0 \le |x h| \le r$.
 - (b) If $(x-h)^2 \le r^2$, then $-r \le x h \le r$.
 - (c) If $-3 \le x \le 2$, then $0 \le x^2 \le 4$.
 - (d) If $-3 \le x \le 2$, then $0 \le x^2 \le 9$.
- 2. Prove Theorem 1 algebraically by using (in)equalities, similar to the class example involving the distance between points in \mathbb{R}^2 . Do **not** use calculus. Do not argue geometrically but rather use geometric idea to form your Thinking Land.
- \triangleright . **Hint.** If $(x-1)^2 + (y-2)^2 \le 4$, then $0 \le (x-1)^2 \le 4$ since

$$0 \le (x-1)^2 = (x-1)^2 + 0 \le (x-1)^2 + (y-2)^2 \le 4.$$

.....

230711 Page 1 of 1