Pin:
Name:
Recall the definition of divides. (See Ch. 1 handout.)
Def. A nonzero integer n divides an integer b, denoted $n \mid b$, provided there exists $k \in \mathbb{Z}$ such that $b=n k$. So $n \in \mathbb{Z} \backslash\{0\}$ divides $b \in \mathbb{Z}$ provided $(\exists k \in \mathbb{Z})[b=n k]$.

Remarks.

- Note 5 divides 10 , also written $5 \mid 10$, since $10=5 \cdot 2$ and $2 \in \mathbb{Z}$.
- The expression " 7 divides $(b+1)$ " can be written as $7 \mid(b+1)$.
- Note $7 \mid b+1$ is wrong (and makes absolutely no sense) since $7 \mid b$ is a statement while 1 is a real number (you cannot add a statement and a number). Lesson learned: don't forget your paretbeses,

Compare the definition of divides to the definitions of even and odd integer.
Def. An integer b is an even integer provided that there exists an $k \in \mathbb{Z}$ such that $b=2 k$.
So $b \in \mathbb{Z}$ is even provided $(\exists k \in \mathbb{Z})[b=2 k]$.
Def. An integer b is an odd integer provided there exists an $k \in \mathbb{Z}$ such that $b=2 k+1$. So $b \in \mathbb{Z}$ is odd provided $(\exists k \in \mathbb{Z})[b=2 k+1]$.
-. Theorem 1. If x and y are integers such that 5 divides x and 5 divides y, then 5 divides $2 x+3 y$. Symbolically written: $\quad(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})[(5|x \wedge 5| y) \Longrightarrow 5 \mid(2 x+3 y)]$.

- Prove Theorem 1.

