Name:
The purpose of this exercise is to prove that the rational numbers \mathbb{Q} are closed under addition.
®. Theorem 1. If $x, y \in \mathbb{Q}$, then $x+y$ is a rational number.
hint. Symbolically written: $(\forall x \in \mathbb{Q})(\forall y \in \mathbb{Q})[x+y \in \mathbb{Q}]$
จ. In class we gave 2 (equivalent) definition of rational numbers \mathbb{Q}. One defintion is

$$
\mathbb{Q}=\left\{x \in \mathbb{R}: x=\frac{a}{b} \text { for some } a, b \in \mathbb{Z} \text { with } b \neq 0\right\} .
$$

(Do Not Use)
The other (simplier) definition is

$$
\begin{equation*}
\mathbb{Q}=\left\{x \in \mathbb{R}: x=\frac{a}{b} \text { for some } a \in \mathbb{Z} \text { and } b \in \mathbb{N}\right\} . \tag{USE}
\end{equation*}
$$

- Prove Theorem 1 by using the definition of rational numbers in (USE).

You may not use the closure properties of $\mathbb{Q}\langle$ since we are proving a closure propery of $\mathbb{Q}\rangle$.
However, you may use the closure propetries of \mathbb{N} and \mathbb{Z}.

