Pin:
Name:
Def. A conjecture is a statement that we believe is plausible (but we do not have a proof for it ... yet).
Def. A counterexample to a conjecture is an example that shows the conjecture is false.

Evaluation of Proof Exercise

Following the instructions for (linked) Evaluation of Proofs exercises (which also are posted on the course homework page), evaluate the below justification of the given conjecture.
-. Conjecture 1. If x and y are odd integers, Then $x y+7$ is an even integer.
Note symbolically: $\quad(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})$ [$(x$ is odd $\wedge y$ is odd $) \Longrightarrow x y+7$ is even $]$
Proposed Proof. Let x and y be odd integers. We will show that $x y+7$ is an even integer.
Since x is an odd integer, by definition of odd integer, there exists $k_{x} \in \mathbb{Z}$ such that

$$
\begin{equation*}
x=2 k_{x}+1 . \tag{1}
\end{equation*}
$$

Since y is an odd integer, by definition of odd integer, there exists $k_{y} \in \mathbb{Z}$ such that

$$
\begin{equation*}
y=2 k_{y}+1 \tag{2}
\end{equation*}
$$

Note 7 is an odd integer, by definition of odd integer, since $7=2(3)+1$. Using (1) and (2) and then using algebra we get

$$
\begin{aligned}
x y+7 & =\left(2 k_{x}+1\right)\left(2 k_{y}+1\right)+7 \\
& =4 k_{x} k_{y}+2 k_{x}+2 k_{y}+1+7 \\
& =4 k_{x} k_{y}+2 k_{x}+2 k_{y}+8 \\
& =2\left(2 k_{x} k_{y}+k_{x}+k_{y}+4\right)
\end{aligned}
$$

and letting $j=2 k_{x} k_{y}+k_{x}+k_{y}+4$

$$
=2 j .
$$

Note $j \in \mathbb{Z}$ since $2,4, k_{x}, k_{y} \in \mathbb{Z}$ and the integers are closed under multiplication and addition.
We have just show $x y+7=2 j$ for some $j \in \mathbb{Z}$. Thus $x y+7$ is even by definition of even.

