P281-

6.1 Introduction to Functions

Definition. A function from a set A to a set B is a rule that associates with each element x of the set A exactly one element of the set B. A function from A to B is also called a **mapping** from A to B.

Definition. Let $f: A \to B$. (This is read, "Let f be a function from A to B.") The set A is called the **domain** of the function f, and we write A = dom(f). The set B is called the **codomain** of the function f, and we write B = codom(f).

If $a \in A$, then the element of B that is associated with a is denoted by f(a) and is called the **image of a under** f. If f(a) = b, with $b \in B$, then a is called a **preimage of b under** f.

Definition. Let $f: A \to B$. The set $\{f(x) \mid x \in A\}$ is called the **range of the function** f and is denoted by range (f). The range of f is sometimes called the **image of the function** f (or the **image of** A **under** f).

6.3 Injections, Surjections, and Bijections

p 307 -323

Definition. Let $f: A \to B$ be a function from the set A to the set B. The function f is called an **injection** provided that

for all $x_1, x_2 \in A$, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

When f is an injection, we also say that f is a **one-to-one function**, or that f is an **injective function**.

Definition. Let $f: A \to B$ be a function from the set A to the set B. The function f is called a **surjection** provided that the range of f equals the codomain of f. This means that

for every $y \in B$, there exists an $x \in A$ such that f(x) = y.

When f is a surjection, we also say that f is an **onto function** or that f maps A **onto** B. We also say that f is a **surjective function**.

Definition. A **bijection** is a function that is both an injection and a surjection. If the function f is a bijection, we also say that f is **one-to-one and onto** and that f is a **bijective function**.

Let $f: A \to B$.

"The function f is an injection" means that

- For all $x_1, x_2 \in A$, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$; or
- For all $x_1, x_2 \in A$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

"The function f is not an injection" means that

• There exist $x_1, x_2 \in A$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$.

Let $f: A \to B$.

"The function f is a surjection" means that

- range(f) = $\operatorname{codom}(f) = B$; or
- ma helpful
- For every $y \in B$, there exists an $x \in A$ such that f(x) = y.

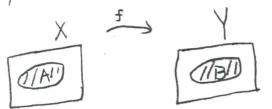
"The function f is not a surjection" means that

- range $(f) \neq \operatorname{codom}(f)$; or
- There exists a $y \in B$ such that for all $x \in A$, $f(x) \neq y$.

Def Consider a function f: X -> Y

Let A = X and B = Y.

Pictorially we have



Then we define the following sets.

Key
$$y \in f[A] \iff \exists a \in A \text{ st. } y = f(a)$$
, $x \in f^{-1}[B] \iff f(x) \in B$

6.4 Composition of Functions

Definition. Let A, B, and C be nonempty sets, and let $f: A \to B$ and $g: B \to C$ be functions. The **composition of** f **and** g is the function $g \circ f: A \to C$ defined by

$$(g\circ f)(x)=g\left(f(x)\right)$$

for all $x \in A$. We often refer to the function $g \circ f$ as a **composite function**.