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Ch 5 Set Mor\/

Definition. TWO. sets, A and B, are equal when they have precisely the same
elements. In this case, we write A = B . When the sets A and B are not

equal, we write A # B.

The set A is'a subset of a set B provided that each element of A is an element
of B. In .thls case, we write A C B and also say that 4 is contained in B.
When A is not a subset of B, we write A  B.

Definition. Let A and B be two sets contained in some universal set U. The

set A is a proper subset of B provided that AC Band A # B. When Aisa
proper subset of B, we write A C B.
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Theorem 5.2. Let A and B be subsets of some universal set U. Th
and onlyif A C B and B C A.

'Deﬁnition. Let A and B be subsets of the universal set U. The sets A and B \

are said to be disjoint provided that AN B = 0.

cardinality

of A and is denoted by card (4).

‘ Definition. The number of elements in a finite set A is called the

Definition. If Aisa subset of a universal set U, then the set whose members
are all the subsets of A is called the power set of A. We denote the power set

of Aby P(A). Symbolically, we write
'P(A)={X_<;U|X<_:A}.

Thatis, X € P(4) ifand only if X € A.




Definition. Let A and B be subsets of some universal set U. The intersection
of A and B, written A N B and read “A intersect B is the set of all elements
S5l that are in both 4 and B. That is,

pzh
AﬂB:{erlxeAandxeB}.

The union of A and B, written A U B and read “A union B.” is the set of all
elements that are in 4 orin B. That s,

AUB={xeU|xeAorxe€ B}.

Definition. Let A and B be subsets of some universal set U. The set differ-
ence of A and B, or relative complement of B with respect to A, written
S5 A — B and read A minus B” or “the complement of B with respect to A is
) the set of all elements in A that are not in B. That is,
21k
? A—B={x€U|x€Aandx¢B}.
The complement of the set 4, written A€ and read “the complement of A
is the set of all elements of U that are not in A. That is,
A¢ ={xeU|x¢A}
Th.eorem 5.18 (Algebra of Set Operations). Let A, B, and C be subsets of some
universal set U. Then all of the following equalities hold.
Przperties c.)flhe EmptySet AN@ =190 ANU =A
o and the Universal Set AUB=A AuU=U
( Idempotent Laws ANA=A AUA=A
Commutative Laws ANB=BNA AUB=BUA
i Associative Laws (ANB)NC=AN(BNC) .
23.5(' (AUB)UC = AU(BUC)
% Distributive Laws AN(BUC)=(ANB)U(ANC)
AU(BNC)=(AUB)N(AUC)
Theorem 5.20. Let A and B be subsets of some universal set U. Then the follow-
ing are true:
Basic Properties (A5 = A
A—B=ANB*
Empty Set and Universal Set A-B=AandA-U =190
%\;3 0 =UandU° =0
- De Morgan’s Laws (AN B)* = A° U B
P (AUB)* = A°N B¢
Subsets and Complements A C B ifand only if B C A°
Definition. Let A and B be sets. An ordered pair (with first element from | |
$5 ‘1 A and second element from B) is a single pair of objects, denoted by (a, b),
514 witha € A and b € B and an implied order. This means that for two ordered
P pairs to be equal, they must contain exactly the same objects in the same order.

( That is, ifa,c € Aand b,d € B, then
(a,b) = (c,d) if and only ifa=candb =d.

The objects in the ordered pair are called the coordinates of the ordered pair.
In the ordered pair (a, b), a is the first coordinate and b is the second coor-
dinate.
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