P 55

Definition. Two sets, A and B, are **equal** when they have precisely the same elements. In this case, we write A = B. When the sets A and B are not equal, we write $A \neq B$.

The set A is a **subset** of a set B provided that each element of A is an element of B. In this case, we write $A \subseteq B$ and also say that A is **contained** in B. When A is not a subset of B, we write $A \nsubseteq B$.

\$5.1 P218 **Definition**. Let A and B be two sets contained in some universal set U. The set A is a **proper subset** of B provided that $\overline{A} \subseteq B$ and $A \neq B$. When A is a proper subset of B, we write $A \subset B$.

\$5,1 D220 **Theorem 5.2.** Let A and B be subsets of some universal set U. Then A = B if and only if $A \subseteq B$ and $B \subseteq A$.

to show A = B, this is Key method of proof

85.2 p236 **Definition**. Let A and B be subsets of the universal set U. The sets A and B are said to be **disjoint** provided that $A \cap B = \emptyset$.

95.1 P223 **Definition**. The number of elements in a finite set A is called the **cardinality** of A and is denoted by card (A).

§ 5, 1

Definition. If A is a subset of a universal set U, then the set whose members are all the subsets of A is called the **power set** of A. We denote the power set of A by $\mathcal{P}(A)$. Symbolically, we write

$$\mathcal{P}(A) = \{ X \subseteq U \mid X \subseteq A \}.$$

That is, $X \in \mathcal{P}(A)$ if and only if $X \subseteq A$.

P222

₹5.1 1216 **Definition**. Let A and B be subsets of some universal set U. The **intersection** of A and B, written $A \cap B$ and read "A intersect B," is the set of all elements that are in both A and B. That is,

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}.$$

The **union** of A and B, written $A \cup B$ and read "A union B," is the set of all elements that are in A or in B. That is,

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}!.$$

Definition. Let A and B be subsets of some universal set U. The set difference of A and B, or relative complement of B with respect to A, written A-B and read "A minus B" or "the complement of B with respect to A," is the set of all elements in A that are not in B. That is,

$$A - B = \{x \in U \mid x \in A \text{ and } x \notin B\}.$$

The **complement** of the set A, written A^c and read "the complement of A," is the set of all elements of U that are not in A. That is,

$$A^c = \{ x \in U \mid x \notin A \}.$$

Theorem 5.18 (Algebra of Set Operations). Let A, B, and C be subsets of some universal set U. Then all of the following equalities hold.

		various Edition
Properties of the Empty Set	$A \cap \emptyset = \emptyset$	$A \cap U = A$
and the Universal Set	$A \cup \emptyset = A$	$A \cup U = U$
Idempotent Laws	$A \cap A = A$	$A \cup A = A$
Commutative Laws	$A\cap B=B\cap A$	$A \cup B = B \cup A$
Associative Laws	$(A \cap B) \cap C = A \cap (B \cap C)$	
	$(A \cup B) \cup C = A \cup (B \cup C)$	
Distributive Laws	$A\cap (B\cup C)=(A$	
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	

Theorem 5.20. Let A and B be subsets of some universal set U. Then the following are true:

Basic Properties
$$(A^c)^c = A$$

$$A - B = A \cap B^c$$
Empty Set and Universal Set
$$A - \emptyset = A \text{ and } A - U = \emptyset$$

$$\emptyset^c = U \text{ and } U^c = \emptyset$$

$$De Morgan's Laws
$$(A \cap B)^c = A^c \cup B^c$$

$$(A \cup B)^c = A^c \cap B^c$$
Subsets and Complements
$$A \subseteq B \text{ if and only if } B^c \subseteq A^c$$$$

Definition. Let A and B be sets. An **ordered pair** (with first element from A and second element from B) is a single pair of objects, denoted by (a, b), with $a \in A$ and $b \in B$ and an implied order. This means that for two ordered pairs to be equal, they must contain exactly the same objects in the same order. That is, if $a, c \in A$ and $b, d \in B$, then

$$(a,b) = (c,d)$$
 if and only if $a = c$ and $b = d$.

The objects in the ordered pair are called the coordinates of the ordered pair. In the ordered pair (a, b), a is the first coordinate and b is the second coordinate.

Theorem 5.25. Let A, B, and C be sets. Then

 $I. A \times (B \cap C) = (A \times B) \cap (A \times C)$

B are sets, then the Cartesian product, $A \times B$, of A and B, and using set builder We use the $\in A$ and $y \in B$. and B is the set of all ordered pairs (x, y) where x $A \times B$ for the Cartesian product of

Definition. If A and

 $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$ notation, we can write

We frequently read $A \times B$ as "A cross B." In the case where the two sets are the same, we will write A^2 for $A \times A$. That is,

 $=\{(a,b)\mid a\in A \text{ and } b\in A\}$

 $A \times A$:

11

6. $(A-B)\times C=(A\times C)-(B\times C)$

If $T \subseteq A$, then $T \times B \subseteq A \times$

B, then $A \times Y \subseteq A \times B$.

UI

 $A \times (B - C) = (A \times B) - (A \times C)$

4. $(A \cup B) \times C = (A \times C) \cup (B \times C)$

 $(A \cap B) \times C = (A \times C) \cap (B \times C)$

 $A \times (B \cup C) = (A \times B) \cup (A \times C)$

notation

853

P248