The goal is to review our high school set theory and，using what we have learned thus far in Math 300，make a transition from the highschool concept to the advanced math concepts．
Union and Intersection of two sets

Defs．Definitions．Let A_{1} and A_{2} be subsets of a universal set U ．$\left\langle\mathrm{eg}, U=\mathbb{R}^{2} \&\right.$ draw 2 subsets A_{1} and A_{2} in $\left.\mathbb{R}^{2}\right\rangle$
1．The union of A_{1} and A_{2} ，denoted $A_{1} \cup A_{2}$ ，is the set of all elements that are in A_{1} or A_{2} ．Thus

$$
\begin{aligned}
& A_{1} \cup A_{2} \stackrel{\text { def }}{=}\left\{x \in U: x \in A_{1} \text { or } x \in A_{2}\right\} \quad \stackrel{\substack{\text { other } \\
=}}{\substack{\text { notation }}} \bigcup_{i=1}^{2} A_{i} \\
& \stackrel{\text { note }}{=}\left\{x \in U: \text { there exists an } i \in\{1,2\} \text { such that } x \in A_{i}\right\} \underset{\substack{\text { other } \\
\text { notation }}}{\bigcup_{i \in\{1,2\}} A_{i}}
\end{aligned}
$$

2．The intersection of A_{1} and A_{2} ，denoted $A_{1} \cap A_{2}$ ，is the set of all elements in both $A_{1} \underset{\sim}{\text { and }} A_{2}$ ．So

$$
\begin{aligned}
& A_{1} \cap A_{2} \stackrel{\text { def }}{=}\left\{x \in U: x \in A_{1} \text { and } x \in A_{2}\right\} \quad \begin{array}{c}
\text { ather } \\
\text { notation }
\end{array} \\
& \bigcap_{i=1}^{2} A_{i} \\
& \stackrel{\text { note }}{=}\left\{x \in U: \text { for all } i \in\{1,2\} \text { we have that } x \in A_{i}\right\} \underset{\substack{\text { other } \\
\text { notation }}}{=} \bigcap_{i \in\{1,2\}} A_{i}
\end{aligned}
$$

3．The relative complement of A_{1} with respect to A_{2} ，also called A_{2} set minus A_{1} ，is the set

$$
A_{2} \backslash A_{1} \stackrel{\text { def }}{=}\left\{x \in U: x \in A_{2} \text { and } x \notin A_{1}\right\} \quad \begin{gathered}
\text { other } \\
\text { notation }
\end{gathered} \quad A_{2}-A_{1} .
$$

4．The complement of A_{1} ，denoted $\left(A_{1}\right)^{C}$ ，is the set of all elements of U that are not in A_{1} ．So

$$
\left(A_{1}\right)^{C} \stackrel{\text { def }}{=}\left\{x \in U: x \notin A_{1}\right\} \stackrel{\text { note }}{=} U \backslash A_{1} \stackrel{\text { note }}{=} U-A_{1}
$$

－Read the beginning of section 5.1 ，up to but not including Set Equality，Susets，and Proper Subsets． After your reading，do the selected problems parts from the variant of ER 5.1 .8 （see course HW page）．
Union and Intersection over arbitrary index set

In the above definitions，we had 2 subsets（ A_{1} and A_{2} ）of a universe U and our index set I was $I=\{1,2\}$ ．We could make similar definitions for union and intersection of 3 sets（so our indexing set I would be $\mathrm{I}=\{1,2,3\}$ ），or even of 17 sets（so our indexing set I would be $I=\{1,2, \ldots, 17\}$ ）．
Defs．Definitions．〈Warning．Do not mix up the universe U and indexing set I ；indeed，U and I serve different purposes．〉 Let U be a universe．Let I be a nonempty set \langle we call I the index set \rangle ．
Consider a family 〈i．e．，collection〉 of subsets $\left\{A_{i}: i \in I\right\}$ of $U\left\langle\right.$ so $A_{i} \subseteq U$ for each $\left.i \in I\right\rangle$ ．
5．The union of family／collection of subsets $\left\{A_{i}: i \in I\right\}$ over the index set I is：

$$
\begin{aligned}
\bigcup_{i \in I} A_{i} & \stackrel{\text { def. }}{=} \quad\left\{x \in U: \text { there exists an } i \in I \text { such that } x \in A_{i}\right\} \\
& \stackrel{\text { i.e. }}{=}\left\{x \in U: x \text { is in (at least) one of the } A_{i} \text { 's }\right\} \stackrel{\text { note }}{\subseteq} U .
\end{aligned}
$$

6．The intersection of family／collection of subsets $\left\{A_{i}: i \in I\right\}$ over the index set I is：

$$
\begin{aligned}
\bigcap_{i \in I} A_{i} & \stackrel{\text { def. }}{=} \quad\left\{x \in U: \text { for all } i \in I \text { we have that } x \in A_{i}\right\} \\
& \stackrel{\text { i.e. }}{=} \quad\left\{x \in U: x \text { is in all of the } A_{i} \text { 's }\right\} \\
& \stackrel{\text { note }}{\subseteq} U .
\end{aligned}
$$

So：．
$\left[x \in \bigcup_{i \in I} A_{i}\right] \Leftrightarrow\left[(\exists i \in I)\left[x \in A_{i}\right]\right] \quad$ while $\left[x \in \bigcap_{i \in I} A_{i}\right] \Leftrightarrow\left[(\forall i \in I)\left[x \in A_{i}\right]\right]$
－Read the beginning of section 5．5，up to but not including Properties of Union and Intersection． We will more so follow the notation in this handout rather than in the book．
After reading，do the selected problem parts from the variant of ER 5．5．2 and 5．5．3．（see HW page）．

