Theorem 1. An integer *n* is even if and only if n^2 is an even.

Symbolically written: $(\forall n \in \mathbb{Z}) [n \text{ is even } \Leftrightarrow n^2 \text{ is even }]$

<u>Proof by Previous Shown Results</u>. Let $n \in \mathbb{Z}$. We will show that n is even if and only if n^2 is even by showing the implication holds in both directions.

First we will show that if n is even then n^2 is even. Let n be even. Since n is even, $n^2 = n \cdot n$, and the product of an even integer and any integer is even [cf. Lemma PEA], n^2 is even. We have just shown if n is even then n^2 is even.

Next we will show that if n^2 is even then n is even. Let n^2 by even. By Theorem S from §2.1, which states that if n^2 is even for an integer n then n is even, we get that n is even. We have just shown if n^2 is even then n is even.

By showing the implication holds in both directions in Theorem 1, we have show that an integer n is even if and only if n^2 is even.

<u>Proof using definitions</u>. Let $n \in \mathbb{Z}$. We will show that n is even if and only if n^2 is even by showing the implication holds in both directions.

First we will show that if n is even then n^2 is even. Let n be even. Since n is even, by definition of an even integer, there is $s \in \mathbb{Z}$ such that

$$n = 2s. \tag{1}$$

By (1)

$$n^2 = (2s) (2s) = 2(2s^2) = 2t$$
 (2)

where $t = 2s^2$. By the closure properties of the integers, $t \in \mathbb{Z}$. Thus (2) gives that n^2 is even by definition of even. We have just shown if n is even then n^2 is even.

Next we will show that if n^2 is even then n is even $\langle \text{think: } R \implies S \rangle$ by using the contrapositive, which is $\langle \sim S \implies \sim R \rangle$, if n is odd then n^2 is odd. So now let n be odd and we will show that n^2 is odd. Since n is odd, by definition of an odd integer, there is $k \in \mathbb{Z}$ such that

$$n = 2k + 1. \tag{3}$$

By (3) and then algebra

$$n^{2} = (2k+1) (2k+1)$$

= $4k^{2} + 4k + 1$
= $2(2k^{2} + 2k) + 1$
= $2i + 1$ (4)

where $j = 2k^2 + 2k$. By the closure properties of the integers, $j \in \mathbb{Z}$. Thus (4) gives that n^2 is odd by definition of odd. We have just shown that if n is an odd integers then n^2 is an odd integer. Thus, by the contrapositive, if n^2 is an even integer then n is an even integer.

By showing the implication holds in both directions in Theorem 1, we have show that an integer n is even if and only if n^2 is even.

Preview:

We now have shown:

• Thm. 3.10. $(\forall n \in \mathbb{Z})$ [n is even $\Leftrightarrow n^2$ is even]

and since $[R \Leftrightarrow S] \equiv [\sim R \Leftrightarrow \sim S]$ and also for an integer *not being even* is the same as *being odd* \circ **Cor. 3.10**. ($\forall n \in \mathbb{Z}$) [*n* is odd $\Leftrightarrow n^2$ is odd].

Homework will be to show:

◦ ER. 3.2.1c. $(\forall n \in \mathbb{Z})$ [n is even \Leftrightarrow n^3 is even]

◦ ER. 3.2.1d. $(\forall n \in \mathbb{Z})$ [n is odd \Leftrightarrow n^3 is odd].

ERhint. As usual, on a specific ER (unless otherwise indicated) you may use any previous: ER or result from class.

NotInBk

 \Rightarrow .

(⇐].

 \Rightarrow .

(⇐].

TS§3.2 Thm3.10

p108

TS§3.1 ER3.1.7ab

p97

Recall Theorem 1

Theorem 1. $(\forall n \in \mathbb{Z})$ [n is even $\Leftrightarrow n^2$ is even].

In our proof by Previously Shown Results,

• the forward direction \implies used Lemma PEA,

 \circ while the backwards direction $\overleftarrow{\leftarrow}$ by §2.1's Theorem S.

We could not somehow combine both directions into one argument since the two directions used a

different Previous Shown Result.

In our proof using definitions,

 \circ the forward direction \implies used a direct proof,

 \circ while the backwards direction \leftarrow by used the contrapositive.

We could not somehow *combine both directions into one argument* since the two directions used different methods of proof.

Compare the situation in Thm. 1 to the situation in Thm. 2.

Theorem 2

Theorem 2. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. It holds that $a \equiv 0 \pmod{n}$ if and only if n divides a. Symbolically written: $(\forall n \in \mathbb{N}) \ (\forall a \in \mathbb{Z}) \ [a \equiv 0 \pmod{n} \Leftrightarrow n \mid a]$

Proof of Theorem 2. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. We will show that $a \equiv 0 \pmod{n}$ if and only if $n \mid a$.

Note the following are equivalent. The expression

$$a \equiv 0 \pmod{n}$$

and, by definiton of congruence,

$$n \mid (a-0)$$

and by algebra

 $n \mid a$.

Thus, we have shown that $a \equiv 0 \pmod{n}$ is equalent to $n \mid a$.

This completes the proof.