
Prof. Girardi §3.2 Biconditional Sample Proofs

Theorem 1. An integer n is even if and only if n2 is an even. TS§3.2
Thm3.10
p108

Symbolically written: (∀n ∈ Z) [ n is even ⇔ n2 is even ]

Proof by Previous Shown Results. Let n ∈ Z. We will show that n is even if and only if n2 is even
by showing the implication holds in both directions.

⇒ . First we will show that if n is even then n2 is even. Let n be even. Since n is even, n2 = n · n,
and the product of an even integer and any integer is even [cf. Lemma PEA], n2 is even. We have
just shown if n is even then n2 is even.

⇐ . Next we will show that if n2 is even then n is even. Let n2 by even. By Theorem S from §2.1,
which states that if n2 is even for an integer n then n is even, we get that n is even. We have just
shown if n2 is even then n is even.

By showing the implication holds in both directions in Theorem 1, we have show that an integer
n is even if and only if n2 is even. �

Proof using definitions. Let n ∈ Z. We will show that n is even if and only if n2 is even by showing
the implication holds in both directions.

⇒ . First we will show that if n is even then n2 is even. Let n be even. Since n is even, by definition
of an even integer, there is s ∈ Z such that

n = 2s. (1)

By (1)

n2 = (2s) (2s) = 2
(
2s2

)
= 2t (2)

where t = 2s2. By the closure properties of the integers, t ∈ Z. Thus (2) gives that n2 is even by
definition of even. We have just shown if n is even then n2 is even.

⇐ . Next we will show that if n2 is even then n is even 〈 think: R =⇒ S 〉 by using the contrapositive,
which is 〈∼ S =⇒ ∼ R 〉, if n is odd then n2 is odd. So now let n be odd and we will show that n2 is
odd. Since n is odd, by definition of an odd integer, there is k ∈ Z such that

n = 2k + 1. (3)

By (3) and then algebra

n2 = (2k + 1) (2k + 1)

= 4k2 + 4k + 1

= 2
(
2k2 + 2k

)
+ 1

= 2j + 1

(4)

where j = 2k2 + 2k. By the closure properties of the integers, j ∈ Z. Thus (4) gives that n2 is odd
by definition of odd. We have just shown that if n is an odd integers then n2 is an odd integer.
Thus, by the contrapositive, if n2 is an even integer then n is an even integer.

By showing the implication holds in both directions in Theorem 1, we have show that an integer
n is even if and only if n2 is even. �

Preview:
We now have shown:
◦ Thm. 3.10. (∀n ∈ Z) [ n is even ⇔ n2 is even ] p108

and since [R⇔ S] ≡ [∼ R⇔∼ S] and also for an integer not being even is the same as being odd
◦ Cor. 3.10. (∀n ∈ Z) [ n is odd ⇔ n2 is odd ] . NotInBk

Homework will be to show:
◦ ER. 3.2.1c. (∀n ∈ Z) [ n is even ⇔ n3 is even ]
◦ ER. 3.2.1d. (∀n ∈ Z) [ n is odd ⇔ n3 is odd ] .

ERhint. As usual, on a specific ER (unless otherwise indicated) you may use any
::::::::
previous: ER or result from class.
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Prof. Girardi §3.2 Biconditional Sample Proofs

Recall Theorem 1

Theorem 1. (∀n ∈ Z) [ n is even ⇔ n2 is even ] . TS§3.2
Thm3.10
p108In our proof by Previously Shown Results,

◦ the forward direction ⇒ used Lemma PEA,

◦ while the backwards direction ⇐ by §2.1’s Theorem S.

We could not somehow combine both directions into one argument since the two directions used a

different Previous Shown Result.

In our proof using definitions,

◦ the forward direction ⇒ used a direct proof,

◦ while the backwards direction ⇐ by used the contrapositive.

We could not somehow combine both directions into one argument since the two directions used

different methods of proof.

Compare the situation in Thm. 1 to the situation in Thm. 2.

Theorem 2

Theorem 2. Let n ∈ N and a ∈ Z. It holds that a ≡ 0 (mod n) if and only if n divides a. TS§3.1
ER3.1.7ab
p97Symbolically written: (∀n ∈ N) (∀a ∈ Z) [ a ≡ 0 (mod n) ⇔ n | a ]

Thinking Land for Theorem 2

Let n ∈ N and a ∈ Z. Note: a ≡ 0 (mod n)
by def. of⇐=========⇒

module congruence
n| (a− 0)

by algebra⇐====⇒ n|a.

Proof of Theorem 2

Proof of Theorem 2. Let n ∈ N and a ∈ Z. We will show that a ≡ 0 (mod n) if and only if n | a.

Note the following are equivalent. The expression

a ≡ 0 (mod n)

and, by definiton of congruence,

n | (a− 0)

and by algebra

n | a.

Thus, we have shown that a ≡ 0 (mod n) is equalent to n | a.

This completes the proof. �
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