Theorem 1. An integer n is even if and only if n^{2} is an even.
Symbolically written: $(\forall n \in \mathbb{Z})$ [n is even $\Leftrightarrow n^{2}$ is even]

Proof by Previous Shown Results. Let $n \in \mathbb{Z}$. We will show that n is even if and only if n^{2} is even by showing the implication holds in both directions.

First we will show that if n is even then n^{2} is even. Let n be even. Since n is even, $n^{2}=n \cdot n$, and the product of an even integer and any integer is even [cf. Lemma PEA], n^{2} is even. We have just shown if n is even then n^{2} is even.

Next we will show that if n^{2} is even then n is even. Let n^{2} by even. By Theorem S from $\S 2.1$, which states that if n^{2} is even for an integer n then n is even, we get that n is even. We have just shown if n^{2} is even then n is even.

By showing the implication holds in both directions in Theorem 1, we have show that an integer n is even if and only if n^{2} is even.

Proof using definitions. Let $n \in \mathbb{Z}$. We will show that n is even if and only if n^{2} is even by showing the implication holds in both directions.
\Rightarrow. First we will show that if n is even then n^{2} is even. Let n be even. Since n is even, by definition of an even integer, there is $s \in \mathbb{Z}$ such that

$$
\begin{equation*}
n=2 s \tag{1}
\end{equation*}
$$

By (1)

$$
\begin{equation*}
n^{2}=(2 s)(2 s)=2\left(2 s^{2}\right)=2 t \tag{2}
\end{equation*}
$$

where $t=2 s^{2}$. By the closure properties of the integers, $t \in \mathbb{Z}$. Thus (2) gives that n^{2} is even by definition of even. We have just shown if n is even then n^{2} is even.

Next we will show that if n^{2} is even then n is even \langle think: $R \Longrightarrow S\rangle$ by using the contrapositive, which is $\langle\sim S \Longrightarrow \sim R\rangle$, if n is odd then n^{2} is odd. So now let n be odd and we will show that n^{2} is odd. Since n is odd, by definition of an odd integer, there is $k \in \mathbb{Z}$ such that

$$
\begin{equation*}
n=2 k+1 \tag{3}
\end{equation*}
$$

By (3) and then algebra

$$
\begin{align*}
n^{2} & =(2 k+1)(2 k+1) \\
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1 \tag{4}\\
& =2 j+1
\end{align*}
$$

where $j=2 k^{2}+2 k$. By the closure properties of the integers, $j \in \mathbb{Z}$. Thus (4) gives that n^{2} is odd by definition of odd. We have just shown that if n is an odd integers then n^{2} is an odd integer. Thus, by the contrapositive, if n^{2} is an even integer then n is an even integer.

By showing the implication holds in both directions in Theorem 1, we have show that an integer n is even if and only if n^{2} is even.

Preview:

We now have shown:

- Thm. 3.10. $(\forall n \in \mathbb{Z})$ [n is even $\Leftrightarrow n^{2}$ is even $]$
and since $[R \Leftrightarrow S] \equiv[\sim R \Leftrightarrow \sim S]$ and also for an integer not being even is the same as being odd
- Cor. 3.10. $(\forall n \in \mathbb{Z})$ [n is odd $\Leftrightarrow n^{2}$ is odd].
p108

NotInBk

Homework will be to show:

- ER. 3.2.1c. $(\forall n \in \mathbb{Z})$ [n is even $\Leftrightarrow n^{3}$ is even]
\circ ER. 3.2.1d. $(\forall n \in \mathbb{Z})\left[n\right.$ is odd $\Leftrightarrow n^{3}$ is odd $]$.
ERhint. As usual, on a specific ER (unless otherwise indicated) you may use any previous: ER or result from class.

Theorem 1. $(\forall n \in \mathbb{Z})$ [n is even $\Leftrightarrow n^{2}$ is even].
In our proof by Previously Shown Results,

- the forward direction \Rightarrow used Lemma PEA,
- while the backwards direction \Leftarrow by $\S 2.1$'s Theorem S .

We could not somehow combine both directions into one argument since the two directions used a different Previous Shown Result.

In our proof using definitions,

- the forward direction \Rightarrow used a direct proof,
- while the backwards direction \Leftarrow by used the contrapositive.

We could not somehow combine both directions into one argument since the two directions used different methods of proof.

Compare the situation in Thm. 1 to the situation in Thm. 2.

Theorem 2

Theorem 2. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. It holds that $a \equiv 0(\bmod n)$ if and only if n divides a.
Symbolically written: $(\forall n \in \mathbb{N})(\forall a \in \mathbb{Z})[a \equiv 0(\bmod n) \Leftrightarrow n \mid a]$
Thinking Land for Theorem 2
Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. Note: $a \equiv 0(\bmod n) \underset{\text { module congruence }}{\stackrel{\text { by def. of }}{\Longrightarrow}} n|(a-0) \stackrel{\text { by algebra }}{\Longleftrightarrow} n| a$.
Proof of Theorem 2
Proof of Theorem 2. Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$. We will show that $a \equiv 0(\bmod n)$ if and only if $n \mid a$. Note the following are equivalent. The expression

$$
a \equiv 0 \quad(\bmod n)
$$

and, by definiton of congruence,

$$
n \mid(a-0)
$$

and by algebra

$$
n \mid a
$$

Thus, we have shown that $a \equiv 0(\bmod n)$ is equalent to $n \mid a$.
This completes the proof.

